DARPA study finds brain stimulation can accelerate learning by 40%

JGeropoulas

The Living Force
DARPA Brain Stimulation can accelerate learning by 40%, could be common by 2023
Brian Wang
NextBigFuture.com
October 23, 2017

HRL Laboratories, LLC, researchers have determined how non-invasive transcranial direct current stimulation (tDCS) could increase performance of associative learning. The researchers found that when applied to the prefrontal cortex, tDCS affects a wide portion of the brain, causing changes in functional connectivity between different brain areas that increased learning speed in macaques.

They can now target stimulation, intervening only at critical points, when memory formation is most likely to occur. “We’re replicating monkey experiment with stimulation occurring only for one second” he said, “just when it gets the reward.” That’s when the association is made. They will eventually seek out FDA approval for a particular device. He believes that in 5-10 years, use of this technology will be widespread.

Done in collaboration with McGill University in Montreal and Soterix Medical in New York, the study was sponsored by the Defense Advanced Research Project Agency (DARPA)’s Restoring Active Memory (RAM) program. Published October 12, 2017, in the journal Current Biology, tDCS in animals showed learning accelerated by about 40% when given 2 mA noninvasively to the prefrontal cortex without increased neuronal firing. This study showed it was modulated connectivity between brain areas, not neuron firing rates, that accounted for the increased learning speed.

“In this experiment we targeted the prefrontal cortex with individualized non-invasive stimulation montages,” said Dr. Praveen Pilly, HRL’s principal investigator on the study. “That is the region that controls many executive functions including decision-making, cognitive control, and contextual memory retrieval. It is connected to almost all the other cortical areas of the brain, and stimulating it has widespread effects. It is also the target of choice in most published behavioral enhancement studies and case studies with transcranial stimulation. We placed the tDCS electrodes on the scalp in both our control and stimulation conditions. The behavioral effect was revealed when they learned to find the reward faster.”

“The improved long-range connectivity between brain areas in the high frequency bands and reduced connectivity in the low frequency bands were the determining factors in our study that could explain the learning improvements with tDCS of the prefrontal cortex,” Pilly said. “Just because neurons can be more brisk in their firing may not lead to changes in performance. Boosting memory function likely requires better coordination of task-relevant information across the cortex.”

Full article: https://www.nextbigfuture.com/2017/10/darpa-brain-stimulation-can-accelerate-learning-by-40-know-why-it-works-could-be-common-by-2023.html

Original research study: http://www.cell.com/current-biology/fulltext/S0960-9822(17)31185-5
 
Ellipse said:
The question is: is there a backfire?
Probably. It interested me mainly because it's another example of the kind of research DARPA funds (no doubt for nefarious goals), more than for any potential benefit to mankind.
 
Back
Top Bottom