Shared Joy
Jedi Council Member
Hi,
I would like to share an article about more details on the various types of K vitamins as they serve an important role in our organism.
http://www.lifeextension.com/magazine/2014/9/the-surprising-longevity-benefits-of-vitamin-k/page-01
Some excerpts from this article
I hope this could be of help to somebody
Joy
I would like to share an article about more details on the various types of K vitamins as they serve an important role in our organism.
http://www.lifeextension.com/magazine/2014/9/the-surprising-longevity-benefits-of-vitamin-k/page-01
Some excerpts from this article
Dr. Bruce Ames is one of the world’s leading authorities on aging and nutrition. Four years ago, Dr. Ames published research indicating that optimum intake of vitamin K plays an important role in longevity.1
A new 2014 study on vitamin K confirms that ample vitamin K intake can indeed help you live longer.2 In a group of more than 7,000 people at high risk for cardiovascular disease, people with the highest intake of vitamin K were 36% less likely to die from any cause at all, compared with those having the lowest intake.
The Many Benefits Of Vitamin K
Vitamin K was first discovered in 1935, when it was found to be an essential nutrient to prevent abnormal bleeding in chickens.8 For decades thereafter, vitamin K was identified as the “coagulation vitamin” (in fact, the initial “K” comes from the German spelling, koagulation). During that time, it was established that vitamin K worked by activating certain proteins made in the liver that are required for normal blood clotting. Without sufficient vitamin K, blood would not clot, and severe bleeding would ensue.9,10
Vitamin K activates those blood-clotting proteins by making a small but vital chemical change in the proteins’ structure, specifically on the protein building block called glutamic acid.11
By the turn of the 21st century, scientists had learned that vitamin K produces similar changes to glutamic acid molecules to activate a handful of other vital proteins in the body, with the collective name of Gla-proteins.12-16 According to 2014 research, 16 different vitamin K-dependent Gla-proteins have been identified.17 This means that they depend on vitamin K to activate them in order to carry out their intended role.
With the discovery of the Gla-proteins, scientists learned that vitamin K is vital for much more than the healthy clotting of blood. For example, the Gla-protein in bone, called osteocalcin, is responsible for making sure calcium is deposited in bones, while the Gla-protein in arterial walls, called matrix Gla protein, prevents calcium from being deposited in arteries.18
Insufficient blood clotting was thought to be the main sign of vitamin K deficiency. However, scientists have since learned that you can have enough vitamin K to promote healthy blood clotting, yet still not have enough vitamin K for it to activate the Gla-proteins necessary to help prevent cardiovascular disease, osteoporosis, diabetes, and cancer, all conditions in which vitamin K-dependent proteins are known to be factors.13,14,19 Fortunately, studies show that vitamin K supplementation can significantly increase the amount of activated Gla-proteins in tissues—without over-activating the clotting proteins.18
Vitamin K And Atherosclerosis
As we age, calcium that belongs in our bones begins to make its appearance in other unwanted areas, including inside the linings of major arteries.20 Over time, normal smooth muscle cells in artery walls transform into bone-like cells through the deposition of calcium, essentially turning sections of artery into bony tissue that is not resilient and flexible, and does not have the ability to effectively regulate blood flow.19,21 This process lends literal reality to the term “hardening of the arteries,” which we now know as late-stage atherosclerosis.
............
Another way matrix Gla proteins help protect against atherosclerosis is by inhibiting the production of inflammatory signaling molecules (cytokines), which contribute to plaque formation and calcification.27 People with the highest dietary intake of vitamin K have significantly lower levels of those inflammatory markers, and also of substances involved in appetite generation and insulin resistance, both of which are important in preventing atherosclerosis.28 (Some of these effects may be related to increased levels of another vitamin K-dependent Gla-protein that suppresses inflammation and promotes glucose tolerance.) 29
..........
Vitamin K And Osteoporosis
Sufficient vitamin K is also required in order to activate the Gla-protein osteocalcin, which binds tightly to bone minerals to create strong bones.33 With inadequate vitamin K, bones can’t hold on to vital calcium, which leads to osteoporosis.34 To make matters worse, the calcium has to go somewhere, so it enters the bloodstream, where it contributes to stiffening arteries.33
........
Vitamin K And Diabetes
Type II diabetics have an increased risk of bone fracture. This is likely due in part to the incomplete activation of the Gla-protein osteocalcin (caused by lack of vitamin K), and the decrease of calcium being deposited in bone that occurs as a result.40 Conversely, people with the highest vitamin K1 intakes have reductions in inflammatory markers related to diabetes.28
Vitamin K has also been found to have a direct impact on the diabetic state itself. In a group of healthy volunteers between 26 and 81 years old, higher dietary vitamin K1 intake was associated with greater insulin sensitivity and lower post-meal glucose levels.41 And in a study of older adults at high risk for cardiovascular disease, the risk of developing type II diabetes was reduced by 17% per 100 micrograms of K1 intake per day.6
............
TYPES OF VITAMIN K
It is clear that vitamin K affects specific and vital proteins throughout the body, well beyond the blood-clotting functions originally described for the vitamin. Less clear, at least for now, are differences in impact on the human body of several different types of vitamin K.
Phylloquinone, or K1, is the predominant source of vitamin K in the diet,55 but it becomes converted to menaquinone, or K2 , in animals, including humans.56 Vitamin K2 itself has several different subtypes, based on molecular structure variations. The subtype MK-4, or menaquinone-4, predominates in animal tissues; it is the natural product of K1 modification in the gastrointestinal tract.57
It is likely that both K1 and K2 are necessary for overall normal vitamin K function, and it appears that supplementation with both is useful, especially for the mounting number of biological tissues other than blood clotting that rely upon adequate vitamin K. The subtype of K2 called MK-7, menaquinone-7 has recently been shown to be more bioavailable than MK-4.58
I hope this could be of help to somebody
Joy