assembling the solar system

rrraven

Dagobah Resident
FOTCM Member
interesting article--http://www.holoscience.com/news.php?article=7y7d3dn5
has some points about brown dwarfs
Return to news story archive 23 October 2008
Assembling the Solar System
From the NASA website comes the following report: “Kevin McKeegan's announcement at the 2008 Lunar and Planetary Science Conference that the pattern of oxygen isotopes on the Sun differs greatly from that of Earth took many planetary scientists by surprise, but the findings may help them explain how Earth and the other planets grew out of the solar nebula, the giant cloud of gas and dust from which the solar system formed. McKeegan heads the UCLA team that is analyzing samples of the solar wind as part of the Genesis mission.

"I learned that experienced scientists were taking bets on the outcome of McKeegan's measurements," said cosmochemist Robert Clayton, "since many were reluctant to believe that the Earth and Sun could have different isotopic compositions.”

COMMENT: Given the vast, empty distances between stars, it seems sensible to assume that the Sun and its family of planets were born together. Scientists take for granted that gravity is the only force operating in the universe to cause matter to coalesce to form stars and planets. Astronomers observe dusty disks around some nearby stars and assume that those disks are the ‘leftovers’ of matter that formed the star. The observations appear to confirm the accepted story of the planets forming from collisions and accretion of matter in the proto-solar disk.
However, all is not as it seems. There are objections to the nebular disk accretion model that should be considered fatal were it not for the fact that no alternative seems possible — given the gravity-driven view of the universe. For example, a slowly rotating cloud may tend to collapse under gravity but a point is quickly reached where the outward rotational force counteracts further collapse. Rotational energy must be dissipated somehow to enable the cloud to collapse more. Assuming you manage to form the Sun inside a disk another serious difficulty arises. Gravitational interactions with the disk cause protoplanets to swiftly spiral into the star. Then there is the problem that the Sun, as the most collapsed object, should be spinning the fastest (like a pirouetting dancer pulling in her arms). But the Sun spins slowly. Almost the entire angular momentum in the solar system is to be found in the orbiting planets. And the Sun’s equator is tilted 7 degrees to the plane of the orbiting planets!

Instead of the expected gradation of properties of the planets with distance from the Sun, we find a ‘fruit salad’ of characteristics, which don’t make any sense in the simple nebular model. For example, the Earth has an abundance of water, yet the region where early Earth formed was too hot for water to be incorporated into a solid body. So, in ad hoc fashion, meteorites had to deliver it later. As one expert on the subject remarked, “you need to make a special case for each planet.” Gravitational accretion of planets from a dusty disk doesn’t work anyway—once a disk, always a disk—look at Saturn’s rings. Theory shows it is hard for a planetesimal to get to 1 km in size. But then to avoid fragmentation by collision, a body needs to be 1000 km to provide enough gravity to retain collision debris!

Special requirements abound in the accretion disk model. Even if we assume, despite the objections above, that planets the size of Jupiter can form, we then need a violent phase of activity from the new Sun at just the right time to dissipate most of the matter of the disk while leaving the gas giants with thick atmospheres. But then, how do we explain Jupiter’s three times the solar abundance of noble gases?

Perhaps the most significant problem with the gravity-only model is how to explain the circularity and long term stability of planetary orbits. After all, more than two bodies moving under the influence of gravity produce a chaotic system. There is no restoring force when a planet is perturbed in its orbit. Under Newtonian law, the solar system today cannot be the same as it was even in the recent past.

When we look at the nearest 100 bright stars in the solar neighborhood (within ~ 25 parsec radius) there are 40 binary stars, 15 triple stars and 5 quadruple stars. How can an accretion model explain so many multiple star systems? And where do the numerous brown dwarf stars fit? They have a much lower binary star fraction of ~ 15%. And why do stars seem to have a maximum mass of ~ 100 solar masses? As another expert put it, “the theory of star formation fails—mysteries abound!”

The Genesis mission provides at least one more mystery. Oxygen is the third most abundant element in the cosmos, of which the isotope oxygen-16 makes up 99.67%, oxygen-17 0.04%, and oxygen-18 0.02%. Kelly Beatty writes— “The Sun represented a critical missing piece of this isotopic puzzle. Cosmochemists assume that whatever atoms populate the solar wind must be representative of what's in the Sun itself and therefore a sample of the raw mix from which the planets formed. So would the Sun's oxygen ratios match those of Earth or of the ancient meteorites? The very framework of planetary formation hung in the balance.

At the 39th annual Lunar and Planetary Science Conference in Houston, Texas, Kevin McKeegan (UCLA) announced that the Sun has proportionately far more oxygen-16, relative to oxygen-17 and -18, than is present in terrestrial seawater. There's a serious mismatch. Instead, the solar ratios follow the same trend seen in primitive meteorites.

Suddenly, Earth is the odd planet out. "We had little idea what the Sun's ratios should be," McKeegan told me after his presentation. Now, he says, there's "no plausible model" to make Earth with the oxygen ratios it exhibits. "It's always been a challenge to supply Earth with the water it has. And now we're wondering how it got the rocks it has."

That view was echoed by Robert Clayton, a University of Chicago cosmochemist. "The CAIs were thought to be the anomaly and we were normal but this result has turned that idea upside down."

It is obvious that the model of the gravitational formation of stars and planets is a failure. So why are self–congratulatory statements like the following, delivered at an astronomical conference in 2005, being made? —

“Two of the great scientific success stories of the last several decades are our growing understanding of the way stars form, and our ability to reconstruct the history of our own Solar System. These two lines of scientific investigation meet in the Sun’s protoplanetary disk.”

It seems scientists should be alerted to the human propensity for confirmatory bias!


Confirmatory Bias in Science

"This refers to the tendency for humans to seek out, attend to, and sometimes embellish experiences that support or ‘confirm’ their beliefs. Confirmatory experiences are selectively welcomed and granted easy credibility. Disconfirmatory experiences, on the other hand, are often ignored, discredited, or treated with obvious defensiveness... the most costly expression of this tendency may well be among scientists themselves…

One study found that the vast majority of scientists drawn from a national sample showed a strong preference for “confirmatory” experiments. Over half of these scientists did not even recognize disconfirmation (modus tollens) as a valid reasoning form! In another study the logical reasoning skills of 30 scientists were compared to those of 15 relatively uneducated Protestant ministers. Where there were performance differences, they tended to favor the ministers. Confirmatory bias was prevalent in both groups, but the ministers used disconfirmatory logic almost twice as often as the scientists did. The costs of this cognitive bias are perhaps nowhere as serious as in the area of scientific publication.” — Michael J. Mahoney, Cognitive Therapy and Research, Vol. 1, No. 2, 1977, pp. 161-175.


But despite scientists’ beliefs, there is an alternative to the gravity-only assumption of consensus cosmogony. Unfortunately astrophysicists are not trained in plasma discharge phenomena so that they might recognize this fact. As in many other scientific disciplines, the inertia of tradition, institutionalization and specialization to the brink of irrelevance has produced terminal tunnel vision. Astrophysics is hamstrung by an unreal but mathematically tractable view of plasma behavior in space. That view suits the dominant mathematical theorists but denies real physics. The specialty is called ‘magnetohydrodynamics.’ The name betrays the fundamentally incorrect approach. Magnetohydrodynamics treats space plasma as a mysteriously magnetized gas. So we hear of stellar “winds” and gaseous “shock fronts.” The solar wind “buffets” against the Earth’s magnetic field.

The ‘father’ of the subject, Hannes Alfvén, notoriously dismissed his own invention in his Nobel Lecture of December 11, 1970. He warned of the consequences:

“these [magnetohydrodynamic] theories had initially very little contact with experimental plasma physics, and all the awkward and complicated phenomena which had been treated in the study of discharges in gases were simply neglected…

The cosmical plasma physics of today is far less advanced than the thermonuclear research physics. It is to some extent the playground of theoreticians who have never seen a plasma in a laboratory. Many of them still believe in formulae which we know from laboratory experiments to be wrong. The astrophysical correspondence to the thermonuclear crisis has not yet come.

I think it is evident now that in certain respects the first approach to the physics of cosmical plasmas has been a failure. It turns out that in several important cases this approach has not given even a first approximation to truth but led into dead-end streets from which we now have to turn back.”

Thirty-eight years later, the thermonuclear crisis remains with us while the unacknowledged astrophysical crisis shows up in the crazy theories we see regularly in space news. Such is the moribund state of politicised and institutionalised science that we remain heading into a dead-end!

Meanwhile, unnoticed by those who have most to gain from it, the largest professional organization on planet Earth, the Institute of Electrical and Electronic Engineers (IEEE), have a Plasma Cosmology division with a far superior model that is amenable to laboratory testing and verification. It is based heavily on Alfvén’s insights and practical laboratory experience of plasma discharge phenomena.



The Electrical Formation of the Solar System

Astronomers see in this image “thick and turbulent clouds of gas and dust” that are “being sculpted into pillars by radiation and winds from hot, massive stars.” The language is misleading and inappropriate. The pillars are not turbulent, they have the characteristic tornadic column form of parallel z-pinch plasma discharge filaments. Z-pinches are the most efficient scavengers of matter in space, having an attractive force that falls linearly with distance from the axis. (Gravity falls off exponentially with the square of the distance). Gravity and turbulence give no explanation for the surprising tornadic forms.

IMAGE
>> Hubble Space Telescope WFPC2 image of a field in the Trifid Nebula. [Click to enlarge] This closeup of a “young stellar objects” (YSO) region shows detail of the Trifid column 2 (TC2). The first stage is called the “emerging gaseous globule” or “EGG.” The sequence of events is conventionally:

(1) Radiation from a massive star drives an ionization front into surrounding molecular gas.
(2) The ionization front (plus winds and previous supernovae drive a shock, triggering collapse of molecular cores.
(3) ~100,000 years after triggered collapse, the ionization front overruns the core, forming an EGG.
(4) EGGs evaporate in ~10,000 years, exposing the disk. The evaporating disk is a proplyd.
(5) In ~10,000 years, disks erode to ~50 AU. Disk evaporation ends, leaving a protostar and bare protoplanetary disk.
(6) The massive star goes supernova, injecting newly synthesized elements into surrounding disks.
Credit: J. Jeff Hester and Steven J. Desch, ASU.

The notion of “triggered collapse” is merely hand waving. The inset image shows the telltale polar jet aligned with the z-pinch column. The glowing “ionization front” is not principally a photo-ionization or collisional effect but the glow of a plasma double-layer, energized by electric current. The nearby Herbig-Haro object, HH399, exhibits the typical thin polar corkscrew jet seen in more detail in the Herbig-Haro 49/50 below

The heated, glowing plasma in these jets can extend for trillions of miles. They do not explosively dissipate in the vacuum of space because of the electromagnetic “pinch effect” of the electric current flowing along the jet. The spiral shape is that of Birkeland current filaments, which are the universal power transmission lines.

Birkeland current pairs have been shown by both experiment and supercomputer simulations to form an axial sump of plasma, segregated radially by Marklund convection. Marklund convection causes helium to form a diffuse outer layer, followed by a hydrogen layer, then oxygen and nitrogen in the middle layers, and iron, silicon and magnesium in the inner layers. So electric stars should have a core of heavy elements and an upper atmosphere mostly of hydrogen.

Birkeland currents align themselves with the ambient magnetic field direction. The hourglass z-pinch shape has been confirmed in the magnetic field of a star-forming region. (See SCIENCE Vol 313 11 August 2006). And in laboratory z-pinch experiments, the plasma tends to form a number of “beads” along the axis (see HH34 above), which “scatter like buckshot” once the discharge subsides.

Alfvén proposed the electrical circuit diagram for a star. It is in the form of a simple Faraday motor, which explains why the Sun’s equatorial plasma is driven fastest. It also explains the presence of the circumstellar disk, formed and held there by electromagnetic forces and not by weak gravity. And the problem of transfer of rotational energy does not arise because the entire system is held by powerful electromagnetic forces and driven like an electric motor. (The same explanation, of course, applies on a much grander scale to the anomalous rotation of the disk of spiral galaxies). When the star-forming z-pinch subsides, gravity is not able to retain the disk for long and current flowing in the disk (the stellar wind) sweeps the space clear.

Planets do not form from a disk of dust and gas about a star.

“Gravitational systems are the ashes of prior electrical systems.” Hannes Alfvén.

Due to Marklund convection, stars have cores of heavy elements. Electric stars are not nuclear furnaces! They shine because they remain embedded in the galactic power grid. The decay of the z-pinch exposes the newborn star to a new electrical environment. The critical factor in the star’s stability is the current density at its photosphere. If it is excessive, the star may electrically “fission” into two or more pieces in order to expose a greater surface area and reduce the current density to a manageable level. Ejection of stellar matter produces a companion star or “gas giant.” That may explain the baffling number of multiple star systems and close-orbiting gas giant planets. Distantly orbiting gas giants, like those in our solar system are another story.

Dwarf stars are born in the same process, probably in larger numbers than the bright stars. They do not require to fission because their electrical stress is low, as evidenced by their light. They may form fewer multiple star systems by a different process—electrical capture—to be explained later.
……………………………

We have dealt with star birth but not the birth of planets like the Earth. The Electric Universe model of solar system formation goes much further than the plasma cosmology model. Instead of imagining some initial state of the solar system and projecting the model forward in time, it is necessary to first look at astronomical records as far back in time as possible to check the basic assumption that the sky has not changed in that time. This may seem a waste of time given the usual mantra that the Earth is 4.5 billion years old. But all ancient cultures recall an age of splendid but terrifying celestial gods and wonders that departed the skies long ago.

Recent research, published by the authority on the many unique forms of high-energy plasma discharge instabilities, has found that prehistoric astronomers chiselled the most ancient astronomical records into solid rock around the globe. Using global positioning and logging the magnetic orientation of these petroglyphs has resulted in a mammoth 3-D dataset, which is expected to allow us to reconstruct the position and evolution of what might be termed “prehistoric mega-auroras.” It extends our understanding of real Earth history by about 10,000 years. A significant finding is that the petroglyphs point toward the ancient celestial plasma display having a focus at the south magnetic pole. That is what we expect of cosmic Birkeland currents, which align with the magnetic field.

The implications of this discovery are dramatic and unprecedented. It shows that the Earth and the solar system have a recent history of instability accompanied by planetary electric discharge activity on a scale unimaginable today. The story requires many books to tell. But the principal message is that the solar system is a composite family. Planets have been acquired at intervals long after the Sun was born. So, looking for isotopic signatures in the solar system is something like DNA testing. Familial ties may be established but they will have nothing to do with the Sun!

In a later news item I will discuss further the simple electrical feedback mechanism that swiftly restores stability in a disturbed many-body electric-gravitational system. (For those who can’t wait, the subject is dealt with in my paper to the SIS Cambridge Conference last year). For now I will simply outline the likely origin of the planets and moons in the solar system.

Where did the Earth come from?

It is known that there are more brown dwarf stars than bright stars. Some astronomers have recently realized that a planet orbiting such a star closely could be the place to look for life. But brown dwarfs, like all stars, are an electric discharge phenomenon. Their visible diameter, like that of enormous cometary comas, is an electric discharge phenomenon and much larger than the star’s solid surface. So the fundamental mass-luminosity relation used to derive the mass, age and size of a star from the character of its light is inapplicable. The electrical nature of stars removes the foundation of stellar astrophysics!

However, a binary pair of brown dwarfs has been discovered, which allowed the determination of their masses and diameters by another method. The result was that “both dwarfs are remarkably large for their masses: about the same diameter as the Sun.” That’s about the same size as the coma of comet Holmes. Their masses were said to be 35 and 55 times Jupiter's mass. The Sun is about 1,000 times the mass of Jupiter, although mass is not a measure of the amount of matter in a body—another major spanner in the works for stellar astrophysics.

Brown dwarfs of that size are considered to be too small to initiate thermonuclear fusion. But that isn’t so in an Electric Universe where all bodies receive electrical energy from the galactic circuit. For example, consider Jupiter as an independent body moving in the galaxy inside its radiant plasma sheath (analogous to a cometary coma). It would be regarded as a brown dwarf star! And even if that glowing sphere were half the size of Jupiter’s present magnetosphere, which is 10,300,000 km in diameter, all of Jupiter’s large moons would orbit comfortably inside that cocoon.

I have noted the significance of this earlier, “Since an electric star is heated externally a planet need not be destroyed by orbiting beneath its anode glow. In fact life is not only possible inside the glow of a small brown dwarf, it seems far more likely than on a planet orbiting outside a star! This is because the radiant energy arriving on a planet orbiting inside a glowing sphere is evenly distributed over the entire surface of the planet. There are no seasons, no tropics and no ice-caps. A planet does not have to rotate, its axis can point in any direction and its orbit can be eccentric." Such an arrangement is far more benign toward life than at present where the energy source, the Sun, subtends a small angle in the sky and the "habitable zone" of orbits is very narrow.

In our neighbourhood, there may be many more brown dwarfs than sun-like stars. They are difficult to detect since they glow mostly in infrared. A spectral class of "L" dwarfs, about one-tenth the mass of the Sun, has been found with an effective temperature of only 700K to 950K (about the same as the surface of Venus at 740K). This is way below the theoretical limit of 1750K for a nuclear powered dwarf star, while it is not a problem for the electric star model. The light from the "L" dwarfs is unaccountably bluer than expected and even exhibits X-rays! Only the electric model has a simple explanation for this conundrum. The higher energy radiation is emitted from the brown dwarf's electrical corona. Therefore the light bathing a satellite will be strongest at the blue and red ends of the spectrum. Skylight on any satellites would probably be a pale purple (see later—the classical "purple dawn of creation"). Photosynthesis relies on red light so plant life could flourish, especially when the atmospheres of the "L' dwarfs contain predominantly water molecules. Satellites would accumulate atmospheres and water would mist down.

Brown dwarfs are noted for their occasional inexplicable polar jets and “flaring.” As explained in my electric stars article, stars that do not have bright, tufted photospheres do not have the power feedback control that maintains the steady radiant output of the Sun while the power input varies—as measured by x-rays and sunspot latitudinal migration. So any power surge on a brown dwarf will be met with polar jets and flaring behavior. We know from coronal mass ejections (CME’s) on the Sun that this involves hurling matter into space.

Flaring would cause havoc on the satellites of a brown dwarf. In the extreme it would give birth to a new satellite. But existing satellites would suffer deposition of solids, liquids and gases and electric discharge machining of their surfaces. This is a scenario never considered by geologists but which explains all of the enigmas of planetary geology.

OK, let us assume that brown dwarfs and their satellites are the most hospitable places in the universe to establish life. That implies that the Earth was originally a satellite of a brown dwarf.
That would explain many things, for example: where we got our water and oxygen atmosphere; why the high latitudes were so warm in the past that we find coal in Antarctica; how the Earth’s gravity and atmosphere in the past could have been so different that it supported megafauna and megaflora; what caused the global mass extinctions with instant burial and fossilization; and so on.

But hang on, you say. What about the fact that gravitational capture is highly unlikely? That’s true. But this is an Electric Universe. Each star, being an electrical body in a galactic discharge, will have a plasma sheath that limits the weak electric field between the star and the sheath. It is the Sun’s heliosphere. The plasma sheath is a “double layer” where almost the entire voltage drop between the star and the galaxy will be found. The heliosphere is about 200 AU across. That’s a big target! You could fit about 1,300 such targets between the nearest star and us. The size of this electrical target is important because it is the minimum distance at which the electrical “insulation” between two stars breaks down. I say “minimum” because the polar circuit of each star extends much, much further—as we see where the circuit has been “lit up” in a planetary nebulae.
earth original a satellite of a brown star?
kinda reminds me of session 011031
Q: (A) Now, the major, the change of the orientation
of the axis, what would be the main trigger, force, or
activity, or what kind of event will trigger this change
of the axis?
A: Cometary bodies.
Q: (L) Are the planets of the solar system going to
kind of shift out of their orbits and run amok? Is that a
possibility?
A: Yes.
Q: (A) Due to cometary orbits alone?
A: Yes. Twin sun also.
Q: (A) When we speak about these cometary bodies,
are we speaking about impacts?
A: Some will hit.
Q: (A) What would be - if any - the role played by
electric phenomena?
A: Twin sun grounds current flow through entire
system setting the "motor" running.
Q: (L) Does this mean that all of the different bodies
of the solar system are like parts of some kind of giant
machine, and once this electric current flows through
them, depending on their positions relative to one
another at the time this current flows, that it has some
influence on the way the machine runs?
A: Yes, more or less.
so do i understand this article right and our earth may have been the twin suns satellite and and at some time in the past( 29 million y?) it swapped it for the sun we have now?
also the C s seem to be agreeing with the electric universe theory

maybe this belongs in earth changes (or noodles) or be merged with another mods please move if you think so
RRR

[moderator: Post edited for clarity]
 
rrraven said:
so do i understand this article right and our earth may have been the twin suns satellite and and at some time in the past( 29 million y?) it swapped it for the sun we have now?
also the C s seem to be agreeing with the electric universe theory

maybe this belongs in earth changes (or noodles) or be merged with another mods please move if you think so
RRR

My understanding of the theory is that they're saying the Earth's capture by the Sun - concomitantly the time we left the brown dwarf 'womb' - was much more recent than 27 million years ago. More on the order of tens of millions of years ago. I could be wrong about that, of course: my introduction to the theory was fairly recently (six or seven months back), and as usual when something grabs my attention I read everything I could find on the internet about it, so some details got mixed up here and there.

Also I don't think the C's support the electric universe theory all the way. In the EUT the importance of gravity is minimized to the degree that black holes are done away with completely; however, the C's repeatedly make reference to black holes as the ultimate expression of STS in the universe. On top of that they often state that gravity is the most important force in the universe. Then again, the EUT has a very different model for the origins of gravity (essentially, an electromagnetic imbalance amongst a large number of atoms, resulting in a weak but persistent attractive force), and it's pretty clear to me that when the C's talk about gravity they're not exactly talking about the same gravity described by Newton or Einstein.

All that said, the EUT is pretty convincing. It provides a very parsimonious explanation for a lot of baffling anomalies that, in conventional astrophysics, can only be explained away through historical contingency ... which is acceptable the first few times, but after a while starts to look more and more like Ptolemaic epicycles. I have a feeling it's closer to the truth than 'consensus' astronomy ... but I also think it's perhaps too radical in some respects (it de-emphasizes gravity too much, IMO), and overly conservative in others (the strict form of the theory holds no room for higher dimensions.)
 
hi psychegram
you wrote
On top of that they often state that gravity is the most important force in the universe.
which has prompted me to search the sessions and the glossary for ' gravity'
...and found that the C s dont actually call it a force but call it :
time
binder/equalizer
awareness
EM
collector of all
stuff of all existence
unified with EM
light energy is expression of gravity
utilization of gravity generates light
so i agree, its most important, but not in the sense of 'force' as we normally think of force
and when you look at the terms with EU in mind they have a electrical 'flavor'
and considering that
Unifying gravity with the three other forces (EM, strong and weak nuclear forces) is considered to be the holy grail of physics...There is reason to believe that key work is suppressed from the public domain and that the science establishment is chasing its tail.....and Even thoughts have gravity
from glossary
gravity seems to have a strong electric connection that has been overlooked/suppressed
as to black holes ... they are rarely mentioned by the C s, its mainly Laura or other participants that ask questions about them and when the C s bring it up themselves they use quotation marks and use the term in the sense of 'grand scale sts' as they said in a early session
black holes also seem to get 'pushed' by popular culture (ptb) which makes them ,to my paranoid mind at least , suspicious :/, so i treat them as a hypothesis rather than a fact for the time being
RRR
 
which has prompted me to search the sessions and the glossary for ' gravity'
...and found that the C s dont actually call it a force but call it :
time
binder/equalizer
awareness
EM
collector of all
stuff of all existence
unified with EM
light energy is expression of gravity
utilization of gravity generates light
so i agree, its most important, but not in the sense of 'force' as we normally think of force
and when you look at the terms with EU in mind they have a electrical 'flavor'
and considering that

Well now, isn't that interesting? I hadn't noticed that. Thanks for doing that research! I'll have to revise my opinions somewhat (always fun when that happens ;D)

as to black holes ... they are rarely mentioned by the C s, its mainly Laura or other participants that ask questions about them and when the C s bring it up themselves they use quotation marks and use the term in the sense of 'grand scale sts' as they said in a early session

I hadn't noticed the quotes around black holes either ... key detail, that. I had wondered if they might not be talking about something very different from simply a collapsed star, however, as from what the C's described it would seem that their 'black holes' (being at the top of the STS feeding hierarchy) possess intelligence, which collapsed stars wouldn't. That's pure speculation, of course. And yeah, the fascination with black holes does seem a bit 'forced' ... The C's mentioned that the Thule Society's 'black sun' was a conscious attempt by practitioners to heighten their STS FRV, so perhaps the popular fascination with black holes is an attempt to do the same thing on a mass scale (albeit surreptitiously?)
 
Anyone interested in the Electric Universe Theory might want to check this out: a new ebook, The Universe Electric, is being published at Thunderbolts:

_http://www.thunderboltsproject.com/Thunderbolts/Ebooks.html
 
psychegram said:
the popular fascination with black holes is an attempt to do the same thing on a mass scale

often a very heavy mass for the scale :D

980711 said:
Q: (J) It's a brown star. (T) One or two steps away from
being a collapsing black hole. (L) Well, that's friendly,
especially after watching "Event Horizon" last night!
A: No. Black holes only form from 1st magnitude stars.

So I think conventional black holes are OK. I know of a theory where stable very small Planck mass black holes are the point from where a new baby big bang can form and this could I think fit with the idea of STS recycling back to primordial matter. All black holes would eventually shrink to Planck size via Hawking radiation. There are also models with gravitons being the links of a spacetime lattice and the photons of EM being the links of the curled up higher spacetime dimensions so this would fit with gravity as a binder and with unification of gravity and EM. Also if you think (as some do) that consciousness and physicality both exist in a very small quantity down at the single link of spacetime level then you can add in awareness too.
 
Bluelamp said:
980711 said:
Q: (J) It's a brown star. (T) One or two steps away from
being a collapsing black hole. (L) Well, that's friendly,
especially after watching "Event Horizon" last night!
A: No. Black holes only form from 1st magnitude stars.

So I think conventional black holes are OK. I know of a theory where stable very small Planck mass black holes are the point from where a new baby big bang can form and this could I think fit with the idea of STS recycling back to primordial matter. All black holes would eventually shrink to Planck size via Hawking radiation. There are also models with gravitons being the links of a spacetime lattice and the photons of EM being the links of the curled up higher spacetime dimensions so this would fit with gravity as a binder and with unification of gravity and EM. Also if you think (as some do) that consciousness and physicality both exist in a very small quantity down at the single link of spacetime level then you can add in awareness too.

I'd considered the connection between mini-big bangs/Hawking radiation and the recycling of STS towards primal matter myself. That might be exactly what the C's were talking about.

Could you provide links to papers/websites discussing the graviton-spacetime lattice models? That sounds most interesting.
 
psychegram said:
Could you provide links to papers/websites discussing the graviton-spacetime lattice models? That sounds most interesting.

http://www.valdostamuseum.org/hamsmith/Sets2Quarks6.html
 
psychegram said:
...as from what the C's described it would seem that their 'black holes' (being at the top of the STS feeding hierarchy) possess intelligence, which collapsed stars wouldn't. That's pure speculation, of course.

It certainly is. The more material I've read concerning the intelligence behind our universe, and the way in which it possibly all came into being, including the galaxies, solar systems and planets, the less I can believe that seemingly physical things like stars are without some kind of intelligence. I know that the Cs touch on this, but I've recently been reading "The Ra Material", and some of the stuff in there relating to creation is truly mind-boggling, but consistent with the Cs and other sources I've read over the years.

Moderation : quote marks edited
 
Thanks for the link Bluelamp!

3D Resident said:
psychegram said:
...as from what the C's described it would seem that their 'black holes' (being at the top of the STS feeding hierarchy) possess intelligence, which collapsed stars wouldn't. That's pure speculation, of course.

It certainly is. The more material I've read concerning the intelligence behind our universe, and the way in which it possibly all came into being, including the galaxies, solar systems and planets, the less I can believe that seemingly physical things like stars are without some kind of intelligence. I know that the Cs touch on this, but I've recently been reading "The Ra Material", and some of the stuff in there relating to creation is truly mind-boggling, but consistent with the Cs and other sources I've read over the years.

Moderation : quote marks edited

I've wondered about that sometimes myself, to tell the truth. Though it's hard to even begin to imagine the sort of intelligence a star might possess.

Regarding the electric universe theory, it's occurred to me that - given the vast, interstellar Birkeland currents that carry electric current between stars, well, that's not just a pathway for the transfer of energy; where energy is transferred, information can be, too. So perhaps this is how stars might talk to each other?
 
thanks for the link, RRR.
On the topic of black holes, i wonder if any of you have read the first book of James Mccaney. Like the link above, Mccaney's model does not require black holes (at all, i think).
also, at the end of his book, there are a few papers of his which he included, the most interesting among which is the galactic formation model. In this, he states that a galactic nucleus starts by absorbing the gases/plasma around it and throws out 2 arms of concentrated material which includes fully formed new stars, and other stellar objects. because the nucleus is rotating, the arms start to rotate also, and eventually we get the standard spiral galaxies.

this is quite different from the current news reports which states that there must be a big black hole in the center of big galaxies (and even newly forming ones?) - Mccaney's galactic nucleus is quite different from the black hole theory at the center of galaxies. I think he says elliptical galaxies are younger than spiral too.

off late there has been quite a big focus on the black holes when talking about galaxies; i wonder if this is a last ditch attempt to conform to outdated stellar evolution models. I too noticed that Cs talked about black holes now and then in response to questions; I'm guessing they have a completely different definition about black holes just like they seem to have when talking about gravity.

Regarding dark matter, the EU theories I've read so far say 99% of the matter is plasma, which account for the missing mass in the universe. I'm not sure the C's mentioned anything conclusive on this one.

I also noticed subtle differences in the theories of EU models from Mccaney, Thornhill etc.; it might be a good idea to start a thread to discuss just this (if not already done) :)
 
Back
Top Bottom