Embodied Cognition & Ecological Psychology - Andrew Wilson & Sabrina Golonka

Ryan

The Living Force
FOTCM Member
Hi All,

Has anyone read the following website? Notes from Two Scientific Psychologists

I just discovered it today, and it’s extraordinary, or so I think. I hadn’t heard anything about embodied cognition or ecological psychology before, and I think this couple are on to something. Here’s a few interesting snippets:

From: Embodied cognition is not what you think it is

Disembodied cognition
The original computational depiction of cognition in the 1960s treats us as general problem solving devices. Similar tasks (e.g. reaching with your left vs. your right hand) are achieved by applying the same underlying general motor programme to the different effector. The body was simply the output system attached to the cognitive processing system; it was cognition that was responsible for all the characteristics of what the body gets up to. More recently, people have begun to realise that the types of bodies contribute non-trivially to the form of our various behaviours, and the idea of 'embodied cognition' began to emerge. [..]

One reason psychologists persist with representations is that they simply can't see what else cognition could possibly be, if not representational and computational. There's simply no excuse for this any more, though: Chemero's book is an excellent and clear exposition of a viable alternative framework, one which was first crystallised by van Gelder's analogy of the Watts steam governor (laid out in detail by Sabrina here). [..]

Embodied cognition is not about letting the body nudge the contents of cognition - it's about treating the body (and the environment, through our embodied perceptual explorations of that environment) as critical elements in a broader cognitive system, and the shape of that system is different from anything we've thought about before in cognitive science.

From What else could it be? The case of the centrifugal govenor.

Van Gelder has clearly picked a side - that cognition emerges from dynamical systems and that cognitive processes are evolutions in the state-space within these systems. [..]

While cognitive psychologists are often happy to admit that dynamical systems do a good job describing some systems like the centrifugal governor, they are hesitant to admit that dynamics might also characterise complex cognitive behaviour. Van Gelder provides an example of how one cognitive phenomenon, decision making, can be modelled as a dynamical system. Decision making is a good example, because it is canonically described with a discrete computational model. According to prospect theory, for instance, we order possible outcomes of a decision - which are losses and which are gains - and then compute the utility of each outcome, selecting the one with the highest utility (Kahneman & Tversky, 1979). This is obviously a scaled-down version of the theory, but you can see that it clearly depends on discrete representations (e.g., of each option’s utility) and computation (e.g., calculating which option has the largest utility value). However, it is also possible to describe decisions in terms of state space evolution in a dynamical system. For example, motivational oscillatory theory (MOT; cf. Townsend) describes oscillations resulting from satiation of persisting desires. We approach food when we’re hungry, but not when we’ve just eaten and are temporarily satiated. It’s possible to interpret this behaviour as a decision – when I’m hungry, I decide to eat. But, in this model there are no discrete states and no algorithmic processes effecting transformation on these states. There is just the evolution of the system over time. Furthermore, peculiarities in human decisions that cannot be accounted for by utility theory (e.g., the common consequence effect) emerge naturally in the dynamic framework. [..]

In the future I’ll tie this discussion back to Gibson and describe why this is the type of solution animals, who have to solve real problems related to survival, are likely to have evolved (see also here).

From Theory, and why it's time psychology got one

Ecological Psychology
I think the closest psychology has to a decent actual theory of behaviour is Gibson's ecological psychology; this is Chemero's bet too. It proposes very specific hypotheses to explain behaviour; these hypotheses contain suggested mechanisms (specifically, information and affordances) to support behaviour, and suggests ways to empirically test these hypotheses. These tests have been very successful (e.g. my work in coordinated rhythmic movement, and the success of the three key predictions of the perception-action model, not to mention affordance research coming out of everywhere).

Because of these successes, I am able to use this theory to generate predictions about other behaviours like [b=http://psychsciencenotes.blogspot.com/2011/10/prospective-control-i-outfielder.html]catching a fly ball[/b]). There are two ways to achieve a goal related to the future state of things: prediction, and prospective control. The former entails taking the current conditions and using these to predict future conditions, then acting on the basis of that prediction. The latter entails coupling your behaviour to specific aspects of current conditions, and letting the future solution emerge as you engage in perceptually controlled behaviour. The ecological approach rules out the former as an option, and goes looking for evidence of the latter. My work based on this theory will either work or it won't; but at least I'll be able to tell the difference, if my empirical work is theoretically constrained. [..]

And the beauty of a period of serious normal science is that if we invest some serious time pushing the theory, looking for cracks, and resisting the temptation to jump ship at the first sign of trouble, we will end up in a better place no matter how it pans out. If the theory breaks, it will have been broken honestly, and for good reasons. If the theory holds up, we [Psychology] will have achieved a lot of progress and begun to act like a real science for a change.

From Some ground rules for a theory of psychology

To summarise: in essence, and some minor details aside, we are advocating for Chemero's (2009) radical embodied cognitive science, with the addition of some elements he was missing (network science & task specific devices). Cognition is embodied, extended and held together by the direct perception of affordances and events; the result is a complex, nonlinear dynamical system that must be analysed as such. The brain is not the sole source of our behaviour, nor is it representing the world; it clearly plays a critical role in this system, though, and we propose that we'll need the tools of network science to describe what it's actually up to (Sporns, 2010). [..]

A logical extension to embodied cognition is the claim that cognition is extended (Clark & Chalmers, 1998). This is the claim that things in the environment literally form part of the cognitive process. This can be summarised in Clark & Chalmers' 'parity principle': “If, as we confront some task, a part of the world functions as a process which, were it done in the head, we would have no hesitation in recognizing as part of the cognitive process, then that part of the world is (so we claim) part of the cognitive process.” - Clark & Chalmers, 1998, pg. 2 [..]

This works, I think, because of the nature of the coupling that goes on when we interact with the world: objects literally become part of us when we interact with them, and the kind of ongoing perception-action loops that support this run deep. [..]

We already have a theory of perception that is up to the task of providing the kind of access to the world that we need: James J Gibson's ecological approach to perception (Gibson, 1979; see the reading group posts on this book). Gibson's book begins with the environment; what is available to the perceiving organism that they might be interested in using. Starting there, rather than with the anatomy of the eye, led Gibson to propose his two key ideas: affordances, and information.[..]

Affordances are the opportunities for behaviour the world offers to a given organism; a handle affords grasping to a organism with a hand, for example. Technically, they are dispositions of the environment. Salt is disposed to dissolve in water, for example, but doesn't dissolve until placed in water. Affordances are dispositions supporting behaviour, but that behaviour doesn't show up until a matching organism comes by. This way of thinking of affordances makes them real properties of the world which persist in the absence of organisms. [..]

The most detailed explanation of how affordances give rise to information is Turvey et al (1981), who lay out the concept of ecological laws to expand on Gibson's (1979) account (see this post, this post and this post on Chapter 5, and this post and this post on Chapter 6 for Gibson's description). These laws govern how the anchoring properties of affordances interact with energy such as light to create structure in light; this structure, by virtue of the law, is specific to the affordance. The laws are ecological in the sense that they have a limited scope: the law does not apply universally, but only in the kinds of niches we find ourselves. Within the scope of the law, however, ecological optics explains how affordances structure light to create information.

Because this information specifies the affordance (i.e. there is a 1:1 mapping between the optics and the world) if you detect the optical information, this is equivalent to perceiving the property of the world. Perception is therefore direct: unmediated by any internal states. As things currently stand, direct perception requires this law based, specification relationship.

Cheers,

Ryan
 
Back
Top Bottom