H
Hildegarda
Guest
http://www.technologyreview[.]com/printer_friendly_article.aspx?id=18911
[..]
Second Life, which started out four years ago as a 1-square-kilometer patch with 500 residents, has grown into almost 600 square kilometers of territory spread over three minicontinents, with 6.9 million registered users and 30,000 to 40,000 residents online at any moment. It's a world with birdsong, rippling water, shopping malls, property taxes, and realistic physics. And life inside is almost as varied as it is outside. "I help out new citizens, I rent some houses on some spare land I have, I socialize," says a longtime Second Lifer whose avatar goes by the name Alan Cyr. "I dance far better than I do in real life. I watch sunsets and sunrises, go swimming, exploring, riding my Second Life Segway. I do a lot of random stuff."
But aside from such diversions, the navigation tools provided by Second Life--users can fly and hover like Superman and zoom between micro and macro views of any object--make it an excellent place to investigate phenomena that would otherwise be difficult to visualize or understand. In that sense, this hideaway from the reality outside is beginning to function as an alternative lens on it. Ever wondered when the International Space Station might pass overhead? At the spaceflight museum, your avatar can fly alongside models of the station, the Hubble Space Telescope, and many other satellites as they orbit a 10-meter-diameter globe in sync with real-world data from the Air Force Space Command [video] [SLurl]. Or perhaps you suspect a bad call by the line judges at Wimbledon. If so, just stroll a virtual tennis court inside Second Life and examine the paths of every serve and volley of a match in progress, reproduced by IBM in close to real time [YouTube video].
Of course, from within a virtual world like Second Life, the real world can be glimpsed only through the imperfect filters of today's software and hardware. Barring a startling increase in the Internet bandwidth available to the average PC user or a plunge in the cost of stereoscopic virtual-reality goggles, we will continue to experience virtual worlds as mere representations of 3-D environments on our flat old computer screens. And your avatar obviously isn't really you; it's a cartoonish marionette awkwardly controlled by your mouse movements and keyboard commands. Moreover, at the moment, every conversation inside a virtual world must be laboriously typed out (although Linden Lab will soon add an optional voice-chat function to Second Life).
So while virtual worlds are good for basic instruction and data representation, professionals aren't yet rushing to use them to analyze large amounts of spatial information. For that, they stick to specialized design, animation, modeling, and mapping software from companies like Autodesk and ESRI. But there's another new genre of 3-D visualization tools that are accessible to both professionals and average Internet users: "virtual globe" programs such as Google Earth, Microsoft's Virtual Earth, and NASA's open-source World Wind. Virtual globes let you plot your city's sewer system, monitor a network of environmental sensors, count up the frequent-flyer miles between New York and New Delhi, or just soar through a photorealistic 3-D model of the Grand Canyon [Google Earth location].
Even as social virtual worlds incorporate a growing amount of real-world data, virtual globes and their 2-D counterparts, Web maps, are getting more personal and immersive. Digital maps are becoming a substrate for what Di-Ann Eisnor, CEO of the mapping site Platial in Portland, OR, calls "neogeography": an explosion of user-created content, such as travel photos and blog posts, pinned to specific locations (see "Killer Maps," October 2005). Using Platial's map annotation software, people have created public maps full of details about everything from the history of genocide to spots for romance. Google has now built a similar annotation feature directly into Google Maps. "The idea that maps can be emotional things to interact with is fairly new," says Eisnor. "But I can imagine a time when the base map is just a frame of reference, and there is much more emphasis on the reviews, opinions, photos, and everything else that fits on top."
As these two trends continue from opposite directions, it's natural to ask what will happen when Second Life and Google Earth, or services like them, actually meet.
Because meet they will, whether or not their owners are the ones driving their integration. Both Google and Linden Lab grant access to their existing 3-D platforms through tools that let outside programmers build their own auxiliary applications, or "mashups." And many computer professionals think the idea of a "Second Earth" mashup is so cool that it's inevitable, whether or not it will offer any immediate way to make money. "As long as somebody can find some really strong personal gratification out of doing it, then there is a driver to make it happen," says Jamais Cascio, a consultant who cofounded the futurist website WorldChanging.com and helps organizations plan for technological change.
The first, relatively simple step toward a Second Earth, many observers predict, will be integrating Second Life's avatars, controls, and modeling tools into the Google Earth environment. Groups of users would then be able to walk, fly, or swim across Google's simulated landscapes and explore intricate 3-D representations of the world's most famous buildings. Google itself may or may not be considering such a project. "It's interesting, and I think there are people who want to do that," says John Hanke, director of the division of the company responsible for Google Earth. "But that's not something where we have any announcements or immediate plans to talk about it."
A second alternative would be to expand the surface area of Second Life by millions of square kilometers and model the new territory on the real earth, using the same topographical data and surface imagery contained in Google Earth. (The existing parts of Second Life could remain, perhaps as an imaginary archipelago somewhere in the Pacific.) That's a much more difficult proposition, for practical, technical reasons that I'll get to later. And in any case, Linden Lab says it's not interested.
But within 10 to 20 years--roughly the same time it took for the Web to become what it is now--something much bigger than either of these alternatives may emerge: a true Metaverse. In Neal Stephenson's 1992 novel Snow Crash, a classic of the dystopian "cyberpunk" genre, the Metaverse was a planet-size virtual city that could hold up to 120 million avatars, each representing someone in search of entertainment, trade, or social contact. The Metaverse that's really on the way, some experts believe, will resemble Stephenson's vision, but with many alterations. It will look like the real earth, and it will support even more users than the Snow Crash cyberworld, functioning as the agora, laboratory, and gateway for almost every type of information-based pursuit. It will be accessible both in its immersive, virtual-reality form and through peepholes like the screen of your cell phone as you make your way through the real world. And like the Web today, it will become "the standard way in which we think of life online," to quote from the Metaverse Roadmap, a forecast published this spring by an informal group of entrepreneurs, media producers, academics, and analysts (Cascio among them).
[..]
While Second Life and Google Earth are commonly mentioned as likely forebears of the Metaverse, no one thinks that Linden Lab and Google will be its lone rulers. Their two systems are interesting mainly because they already have many adherents, and because they exemplify two fundamentally different streams of technology that will be essential to the Metaverse's construction.
Second Life is a true virtual world, unconstrained by any resemblance to the real planet. What unites it and similar worlds such as There, Entropia Universe, Moove, Habbo Hotel, and Kaneva--beyond their 3-D graphics--is that they're free-flowing, ungoverned communities shaped by the shared imaginations of their users. "Consensual hallucinations" was the term William Gibson used in his groundbreaking 1984 cyberpunk novel Neuromancer, which posited a Matrix-like cybersphere years before Snow Crash. These worlds are not games, however. Users don't go on quests or strive to acquire more gold or magic spells; they're far more likely to spend their time at virtual campfires, discos, and shopping malls.
[..]
Google Earth and competing programs such as Microsoft Virtual Earth, on the other hand, are more accurately described as mirror worlds--a term invented by Yale University computer scientist David Gelernter (see "Artificial Intelligence Is Lost in the Woods") to denote geographically accurate, utilitarian software models of real human environments and their workings. If they were books, virtual worlds would be fiction and mirror worlds would be nonfiction. They are microcosms: reality brought down to a size at which it can be grasped, manipulated, and rearranged, like an obsessively detailed dollhouse. And they're used to keep track of the real world rather than to escape from it. Environmental scientists and sensor-net researchers, for example, are already feeding live data on climate conditions, pollution, and the like into Google Earth and Microsoft Virtual Earth, where the added spatial and geographical dimensions give extra context and help reveal hidden patterns.
It's easy to see how a detailed mirror world might bring a tactical advantage to a large corporation, government agency, or military force--for example, by making it easier for the Wal-Marts of the future to track merchandise from factory to warehouse to retail shelf, or explore what-if scenarios such as the impact of a major storm on the supply chain. But when mirror worlds are joined by a third technology stream--what's being called "mobile augmented reality"--they will become even more indispensable.
[..]
"Google Earth itself is really neat," comments Jamais Cascio, the Metaverse Roadmap coauthor. "But Google Earth coupled with millions of sensors around the world, offering you real-time visuals, real-time atmospheric data, and so on--that's transformative."
Indeed, it's important to remember that alongside the construction of the Metaverse, a complementary and equally ambitious infrastructure project is under way. It's the wiring of the entire world, without the wires: tiny radio-connected sensor chips are being attached to everything worth monitoring, including bridges, ventilation systems, light fixtures, mousetraps, shipping pallets, battlefield equipment, even the human body. To be of any use, the vast amounts of data these sensors generate must be organized and displayed in forms that diagnosticians or decision makers can understand; "reality mining" is the term researchers from Accenture Technology Labs, the MIT Media Lab, and other organizations are using for this emerging specialty. And what better place to mine reality than in virtual space, where getting underneath, around, and inside data-rich representations of real-world objects is effortless?
In the field, technicians or soldiers may get 2-D slices of the most critical information through wireless handheld devices or heads-up displays; in operations centers, managers or military commanders will dive into full 3-D sensoriums to visualize their domains. "Augmented reality and sensor nets will blend right into virtual worlds," predicts Linden Lab's Ondrejka. "That's when the line between the real world and its virtual representations will start blurring."
I asked David Gelernter why we'd need the Metaverse or even mirror worlds, with all the added complications of navigating in three dimensions, when the time-tested format of the flat page has brought us so far on the Web. "That's exactly like asking why we need Web browsers when we already have Gopher, or why we need Fortran when assembly language works perfectly well," he replied.
The current Web might be capable of presenting all the real-time spatial data expected to flow into the Metaverse, Gelernter elaborates, but it wouldn't be pretty. And it would keep us locked into a painfully mixed and inaccurate metaphor for our information environment--with "pages" that we "mark up" and collect into "sites" that we "go to" by means of a "locator" (the L in URL)--when a much more natural one is available. "The perception of the Web as geography is meaningless--it's a random graph," Gelernter says. "But I know my physical surroundings. I have a general feel for the world. This is what humans are built for, and this is the way they will want to deal with their computers."
Judging by the growing market for location-aware technologies like GPS cell phones, the popularity of map-based storytelling and neogeography mashups like Platial, and the blistering pace of Google Earth downloads, Gelernter may be right. Google Earth is now so well known that it has been satirized on The Simpsons and is becoming a forum for classified ads and résumés. Second Life, meanwhile, is gaining roughly 25,000 members a day, sometimes stretching Linden Lab's ability to keep its simulations running smoothly.
But for a true Metaverse to emerge, programmers must begin to weave together the technologies of social virtual worlds and mirror worlds. That would be a simpler task if Google and Linden Labs would release the source code behind their respective platforms, or at least provide application programming interfaces (APIs) so that outside developers could tap into their deeper functions. In late 2006, Google released an interface that allowed outside programmers to control some aspects of Google Earth's behavior, but it wasn't a full API, and there's been no sign of one since. This January, Linden Lab released the source code for the Second Life viewer (the program that residents use on their PCs to connect to Second Life). Ondrejka says the code for the core Second Life simulation software will follow. First, he says, the company needs to get that software working better--and figure out how to make money in a world where it may no longer control the expansion of the Second Life ecosystem.
[..]
Such possibilities are uplifting, to be sure, but the hardnosed truth is that we don't need a Stephensonian Metaverse to make them happen. Remote collaboration, virtual tourism, shopping, education, training, and the like are already common on the Web, a vast resource that grows faster than we can figure out how to use it. Digital globes are gaining in fidelity, as cities are filled out with 3-D models and old satellite imagery is gradually replaced by newer high-resolution shots. And today's island virtual worlds will only get better, with more-realistic avatars and settings and stronger connections to outside reality. A fully articulated Metaverse, whether it's more like Snow Crash or Second Life, would undeniably be overkill.
But many people feel a pull toward the Metaverse dream that defies practical logic. To illustrate, Will Harvey, the creator of There, tells a story about water.
Liquid, running, rippling water was one of the features he and his team badly wanted to include in There. "Every employee of the company understood that water was an essential component that made a landscape feel like a real place," Harvey says. And when arch rival Second Life launched a few months before There in 2003, it was soaking in animated H2O, from waterfalls to fountains to the vast ocean surrounding its continents. "It became a standing joke that we desperately needed water," Harvey continues. "But the business side of the company understood, correctly, that water wasn't necessary to solve the problem of creating a place for people to socialize."
The argument wore on for months. In the end, There got water, but it was motionless and impenetrable--"like blue cement," Harvey says scowlingly.
The point, says Harvey, is that "if you trim the technology down to the features you really need in order to solve a problem, you end up with something that's a lot less than the Metaverse. But deep inside me and inside all of the people running There or Second Life is a desire to build this incredibly fascinating, incredibly rich version of the Metaverse, the one that has been the vision of science fiction authors for 30 years and of computer engineers for 20."
I have come to understand this desire. In the course of my research for this story, I bought land in Second Life, built a house, filled it with furniture, bought and razed the adjoining land, lifted my house a hundred meters into the sky to get it out of the way, and began work on a bigger house [SLurl]. I was also befriended by dozens of Second Life residents, several of whom I now know better than my real neighbors. Most were delighted to hear about my story, to tell me how they're spending their second lives, and to show me their own creations, including a hot-dog-shaped airplane and an animated Tibetan prayer wheel.
This, then, is how the Metaverse will take shape: through the imaginations of the programmers, merchants, artists, activists, and networkers who are already moving there. If these part-time émigrés from reality want embellishments like running water or six sunsets a day, they'll code their universes that way. The rest of us may smile at their whimsy--but we will take up, and come to depend upon, the serious tools that underlie their play. And if the world we create together is less lonely and less unpredictable than the one we have now, we'll have made a good start.
**************
the last sentence just floors me.
Now, they can very easily merge the original Google function -- internet search -- with this, essentially, complete new layer of the Matrix. Just have the avatars do search in virtual libraries, wih all results coming up as books on a shelf, all color coded and tagged in other ways. This way, they'll get everybody in.
Google is pure EVIL, IMO.
[..]
Second Life, which started out four years ago as a 1-square-kilometer patch with 500 residents, has grown into almost 600 square kilometers of territory spread over three minicontinents, with 6.9 million registered users and 30,000 to 40,000 residents online at any moment. It's a world with birdsong, rippling water, shopping malls, property taxes, and realistic physics. And life inside is almost as varied as it is outside. "I help out new citizens, I rent some houses on some spare land I have, I socialize," says a longtime Second Lifer whose avatar goes by the name Alan Cyr. "I dance far better than I do in real life. I watch sunsets and sunrises, go swimming, exploring, riding my Second Life Segway. I do a lot of random stuff."
But aside from such diversions, the navigation tools provided by Second Life--users can fly and hover like Superman and zoom between micro and macro views of any object--make it an excellent place to investigate phenomena that would otherwise be difficult to visualize or understand. In that sense, this hideaway from the reality outside is beginning to function as an alternative lens on it. Ever wondered when the International Space Station might pass overhead? At the spaceflight museum, your avatar can fly alongside models of the station, the Hubble Space Telescope, and many other satellites as they orbit a 10-meter-diameter globe in sync with real-world data from the Air Force Space Command [video] [SLurl]. Or perhaps you suspect a bad call by the line judges at Wimbledon. If so, just stroll a virtual tennis court inside Second Life and examine the paths of every serve and volley of a match in progress, reproduced by IBM in close to real time [YouTube video].
Of course, from within a virtual world like Second Life, the real world can be glimpsed only through the imperfect filters of today's software and hardware. Barring a startling increase in the Internet bandwidth available to the average PC user or a plunge in the cost of stereoscopic virtual-reality goggles, we will continue to experience virtual worlds as mere representations of 3-D environments on our flat old computer screens. And your avatar obviously isn't really you; it's a cartoonish marionette awkwardly controlled by your mouse movements and keyboard commands. Moreover, at the moment, every conversation inside a virtual world must be laboriously typed out (although Linden Lab will soon add an optional voice-chat function to Second Life).
So while virtual worlds are good for basic instruction and data representation, professionals aren't yet rushing to use them to analyze large amounts of spatial information. For that, they stick to specialized design, animation, modeling, and mapping software from companies like Autodesk and ESRI. But there's another new genre of 3-D visualization tools that are accessible to both professionals and average Internet users: "virtual globe" programs such as Google Earth, Microsoft's Virtual Earth, and NASA's open-source World Wind. Virtual globes let you plot your city's sewer system, monitor a network of environmental sensors, count up the frequent-flyer miles between New York and New Delhi, or just soar through a photorealistic 3-D model of the Grand Canyon [Google Earth location].
Even as social virtual worlds incorporate a growing amount of real-world data, virtual globes and their 2-D counterparts, Web maps, are getting more personal and immersive. Digital maps are becoming a substrate for what Di-Ann Eisnor, CEO of the mapping site Platial in Portland, OR, calls "neogeography": an explosion of user-created content, such as travel photos and blog posts, pinned to specific locations (see "Killer Maps," October 2005). Using Platial's map annotation software, people have created public maps full of details about everything from the history of genocide to spots for romance. Google has now built a similar annotation feature directly into Google Maps. "The idea that maps can be emotional things to interact with is fairly new," says Eisnor. "But I can imagine a time when the base map is just a frame of reference, and there is much more emphasis on the reviews, opinions, photos, and everything else that fits on top."
As these two trends continue from opposite directions, it's natural to ask what will happen when Second Life and Google Earth, or services like them, actually meet.
Because meet they will, whether or not their owners are the ones driving their integration. Both Google and Linden Lab grant access to their existing 3-D platforms through tools that let outside programmers build their own auxiliary applications, or "mashups." And many computer professionals think the idea of a "Second Earth" mashup is so cool that it's inevitable, whether or not it will offer any immediate way to make money. "As long as somebody can find some really strong personal gratification out of doing it, then there is a driver to make it happen," says Jamais Cascio, a consultant who cofounded the futurist website WorldChanging.com and helps organizations plan for technological change.
The first, relatively simple step toward a Second Earth, many observers predict, will be integrating Second Life's avatars, controls, and modeling tools into the Google Earth environment. Groups of users would then be able to walk, fly, or swim across Google's simulated landscapes and explore intricate 3-D representations of the world's most famous buildings. Google itself may or may not be considering such a project. "It's interesting, and I think there are people who want to do that," says John Hanke, director of the division of the company responsible for Google Earth. "But that's not something where we have any announcements or immediate plans to talk about it."
A second alternative would be to expand the surface area of Second Life by millions of square kilometers and model the new territory on the real earth, using the same topographical data and surface imagery contained in Google Earth. (The existing parts of Second Life could remain, perhaps as an imaginary archipelago somewhere in the Pacific.) That's a much more difficult proposition, for practical, technical reasons that I'll get to later. And in any case, Linden Lab says it's not interested.
But within 10 to 20 years--roughly the same time it took for the Web to become what it is now--something much bigger than either of these alternatives may emerge: a true Metaverse. In Neal Stephenson's 1992 novel Snow Crash, a classic of the dystopian "cyberpunk" genre, the Metaverse was a planet-size virtual city that could hold up to 120 million avatars, each representing someone in search of entertainment, trade, or social contact. The Metaverse that's really on the way, some experts believe, will resemble Stephenson's vision, but with many alterations. It will look like the real earth, and it will support even more users than the Snow Crash cyberworld, functioning as the agora, laboratory, and gateway for almost every type of information-based pursuit. It will be accessible both in its immersive, virtual-reality form and through peepholes like the screen of your cell phone as you make your way through the real world. And like the Web today, it will become "the standard way in which we think of life online," to quote from the Metaverse Roadmap, a forecast published this spring by an informal group of entrepreneurs, media producers, academics, and analysts (Cascio among them).
[..]
While Second Life and Google Earth are commonly mentioned as likely forebears of the Metaverse, no one thinks that Linden Lab and Google will be its lone rulers. Their two systems are interesting mainly because they already have many adherents, and because they exemplify two fundamentally different streams of technology that will be essential to the Metaverse's construction.
Second Life is a true virtual world, unconstrained by any resemblance to the real planet. What unites it and similar worlds such as There, Entropia Universe, Moove, Habbo Hotel, and Kaneva--beyond their 3-D graphics--is that they're free-flowing, ungoverned communities shaped by the shared imaginations of their users. "Consensual hallucinations" was the term William Gibson used in his groundbreaking 1984 cyberpunk novel Neuromancer, which posited a Matrix-like cybersphere years before Snow Crash. These worlds are not games, however. Users don't go on quests or strive to acquire more gold or magic spells; they're far more likely to spend their time at virtual campfires, discos, and shopping malls.
[..]
Google Earth and competing programs such as Microsoft Virtual Earth, on the other hand, are more accurately described as mirror worlds--a term invented by Yale University computer scientist David Gelernter (see "Artificial Intelligence Is Lost in the Woods") to denote geographically accurate, utilitarian software models of real human environments and their workings. If they were books, virtual worlds would be fiction and mirror worlds would be nonfiction. They are microcosms: reality brought down to a size at which it can be grasped, manipulated, and rearranged, like an obsessively detailed dollhouse. And they're used to keep track of the real world rather than to escape from it. Environmental scientists and sensor-net researchers, for example, are already feeding live data on climate conditions, pollution, and the like into Google Earth and Microsoft Virtual Earth, where the added spatial and geographical dimensions give extra context and help reveal hidden patterns.
It's easy to see how a detailed mirror world might bring a tactical advantage to a large corporation, government agency, or military force--for example, by making it easier for the Wal-Marts of the future to track merchandise from factory to warehouse to retail shelf, or explore what-if scenarios such as the impact of a major storm on the supply chain. But when mirror worlds are joined by a third technology stream--what's being called "mobile augmented reality"--they will become even more indispensable.
[..]
"Google Earth itself is really neat," comments Jamais Cascio, the Metaverse Roadmap coauthor. "But Google Earth coupled with millions of sensors around the world, offering you real-time visuals, real-time atmospheric data, and so on--that's transformative."
Indeed, it's important to remember that alongside the construction of the Metaverse, a complementary and equally ambitious infrastructure project is under way. It's the wiring of the entire world, without the wires: tiny radio-connected sensor chips are being attached to everything worth monitoring, including bridges, ventilation systems, light fixtures, mousetraps, shipping pallets, battlefield equipment, even the human body. To be of any use, the vast amounts of data these sensors generate must be organized and displayed in forms that diagnosticians or decision makers can understand; "reality mining" is the term researchers from Accenture Technology Labs, the MIT Media Lab, and other organizations are using for this emerging specialty. And what better place to mine reality than in virtual space, where getting underneath, around, and inside data-rich representations of real-world objects is effortless?
In the field, technicians or soldiers may get 2-D slices of the most critical information through wireless handheld devices or heads-up displays; in operations centers, managers or military commanders will dive into full 3-D sensoriums to visualize their domains. "Augmented reality and sensor nets will blend right into virtual worlds," predicts Linden Lab's Ondrejka. "That's when the line between the real world and its virtual representations will start blurring."
I asked David Gelernter why we'd need the Metaverse or even mirror worlds, with all the added complications of navigating in three dimensions, when the time-tested format of the flat page has brought us so far on the Web. "That's exactly like asking why we need Web browsers when we already have Gopher, or why we need Fortran when assembly language works perfectly well," he replied.
The current Web might be capable of presenting all the real-time spatial data expected to flow into the Metaverse, Gelernter elaborates, but it wouldn't be pretty. And it would keep us locked into a painfully mixed and inaccurate metaphor for our information environment--with "pages" that we "mark up" and collect into "sites" that we "go to" by means of a "locator" (the L in URL)--when a much more natural one is available. "The perception of the Web as geography is meaningless--it's a random graph," Gelernter says. "But I know my physical surroundings. I have a general feel for the world. This is what humans are built for, and this is the way they will want to deal with their computers."
Judging by the growing market for location-aware technologies like GPS cell phones, the popularity of map-based storytelling and neogeography mashups like Platial, and the blistering pace of Google Earth downloads, Gelernter may be right. Google Earth is now so well known that it has been satirized on The Simpsons and is becoming a forum for classified ads and résumés. Second Life, meanwhile, is gaining roughly 25,000 members a day, sometimes stretching Linden Lab's ability to keep its simulations running smoothly.
But for a true Metaverse to emerge, programmers must begin to weave together the technologies of social virtual worlds and mirror worlds. That would be a simpler task if Google and Linden Labs would release the source code behind their respective platforms, or at least provide application programming interfaces (APIs) so that outside developers could tap into their deeper functions. In late 2006, Google released an interface that allowed outside programmers to control some aspects of Google Earth's behavior, but it wasn't a full API, and there's been no sign of one since. This January, Linden Lab released the source code for the Second Life viewer (the program that residents use on their PCs to connect to Second Life). Ondrejka says the code for the core Second Life simulation software will follow. First, he says, the company needs to get that software working better--and figure out how to make money in a world where it may no longer control the expansion of the Second Life ecosystem.
[..]
Such possibilities are uplifting, to be sure, but the hardnosed truth is that we don't need a Stephensonian Metaverse to make them happen. Remote collaboration, virtual tourism, shopping, education, training, and the like are already common on the Web, a vast resource that grows faster than we can figure out how to use it. Digital globes are gaining in fidelity, as cities are filled out with 3-D models and old satellite imagery is gradually replaced by newer high-resolution shots. And today's island virtual worlds will only get better, with more-realistic avatars and settings and stronger connections to outside reality. A fully articulated Metaverse, whether it's more like Snow Crash or Second Life, would undeniably be overkill.
But many people feel a pull toward the Metaverse dream that defies practical logic. To illustrate, Will Harvey, the creator of There, tells a story about water.
Liquid, running, rippling water was one of the features he and his team badly wanted to include in There. "Every employee of the company understood that water was an essential component that made a landscape feel like a real place," Harvey says. And when arch rival Second Life launched a few months before There in 2003, it was soaking in animated H2O, from waterfalls to fountains to the vast ocean surrounding its continents. "It became a standing joke that we desperately needed water," Harvey continues. "But the business side of the company understood, correctly, that water wasn't necessary to solve the problem of creating a place for people to socialize."
The argument wore on for months. In the end, There got water, but it was motionless and impenetrable--"like blue cement," Harvey says scowlingly.
The point, says Harvey, is that "if you trim the technology down to the features you really need in order to solve a problem, you end up with something that's a lot less than the Metaverse. But deep inside me and inside all of the people running There or Second Life is a desire to build this incredibly fascinating, incredibly rich version of the Metaverse, the one that has been the vision of science fiction authors for 30 years and of computer engineers for 20."
I have come to understand this desire. In the course of my research for this story, I bought land in Second Life, built a house, filled it with furniture, bought and razed the adjoining land, lifted my house a hundred meters into the sky to get it out of the way, and began work on a bigger house [SLurl]. I was also befriended by dozens of Second Life residents, several of whom I now know better than my real neighbors. Most were delighted to hear about my story, to tell me how they're spending their second lives, and to show me their own creations, including a hot-dog-shaped airplane and an animated Tibetan prayer wheel.
This, then, is how the Metaverse will take shape: through the imaginations of the programmers, merchants, artists, activists, and networkers who are already moving there. If these part-time émigrés from reality want embellishments like running water or six sunsets a day, they'll code their universes that way. The rest of us may smile at their whimsy--but we will take up, and come to depend upon, the serious tools that underlie their play. And if the world we create together is less lonely and less unpredictable than the one we have now, we'll have made a good start.
**************
the last sentence just floors me.
Now, they can very easily merge the original Google function -- internet search -- with this, essentially, complete new layer of the Matrix. Just have the avatars do search in virtual libraries, wih all results coming up as books on a shelf, all color coded and tagged in other ways. This way, they'll get everybody in.
Google is pure EVIL, IMO.