Gut microbes trigger fat loss in response to cold temperatures

Eboard10

The Living Force
FOTCM Member
An interesting study was published showing how thermogenesis in mice improves glucose metabolism, increases fat burning thus reducing body weight and promotes the growth of the good beige fat which protects from exposure to extreme cold temperatures. These effects seem to stem from gut microbes regulating energy balance in reaction to changes in the environment. Long-term exposure to cold temperatures also increases the surface area of intestinal cells that absorb nutrients as a way to produce more energy to protect against hypothermia. The study brings to light some very valuable insights into the positive impact of cold exposure and thermogenesis on our metabolism, which has been discussed in the show with Dr. Jack Kruse.

http://medicalxpress.com/news/2015-12-gut-microbes-trigger-fat-loss.html

Exposure to cold temperatures is known to mimic the effects of exercise, protecting against obesity and improving metabolic health. A study published December 3 in Cell now reveals that the beneficial health effects of cold exposure are mediated in part by gut microbes. The researchers found that cold exposure dramatically alters the composition of intestinal bacteria in mice and that this microbial shift is sufficient to burn fat, improve glucose metabolism, and reduce body weight.

"We provide compelling evidence that gut microbes play a key role in our ability to adapt to the environment by directly regulating our energy balance," says senior study author Mirko Trajkovski of the University of Geneva. "We are excited about exploring the therapeutic potential of these findings and testing whether targeting some of these microbes could be a promising approach for preventing obesity and related metabolic conditions."

One potential therapeutic avenue for obesity centers on promoting the formation of good types of body fat known as brown and beige fat. Human infants have large amounts of heat-generating brown fat to protect them from extreme cold, and scientists recently discovered that adult humans also retain brown fat stores consisting mainly of a subtype known as beige fat. Cold exposure or exercise can promote the formation of beige fat, thereby burning stored calories and protecting mammals from hypothermia, obesity, and metabolic problems.

Because gut microbes have been implicated in obesity and related metabolic conditions, Trajkovski and his team suspected that they might also play a role in mediating the positive health effects of cold exposure. In support of this idea, they found that exposure to a cold temperature (6° Celsius, 43° Fahrenheit) for up to 10 days caused a major shift in the composition of gut microbes while preventing weight gain in mice.

The researchers next tested the direct impact of these microbes on metabolic health. To do so, they transplanted the cold-induced gut bacteria into other mice that did not harbor gut microbes because they had been raised in a germ-free environment. The transplanted microbes improved glucose metabolism, increased tolerance to cold temperatures, and caused weight loss in the recipient mice by promoting the formation of beige fat. "These findings demonstrate that gut microbes directly regulate the energy balance in response to changes in the environment," Trajkovski says.

However, after three weeks of cold exposure, body weight began to stabilize. The researchers suspected that the intestine was absorbing more nutrients from food, counteracting additional weight loss that would otherwise result from higher overall energy expenditure.

In support of this idea, transplantation experiments showed that gut microbes associated with long-term cold exposure caused the intestine to grow in size and triggered an increase in the surface area of intestinal cells that absorb nutrients. "These findings demonstrate that gut microbes enable mammals to harvest more energy from food as a way to adapt to the increased energy demand associated with long periods of cold exposure, thereby helping to protect against hypothermia," Trajkovski says. "We were surprised to see that gut microbes had such dramatic effects on the structure and function of the intestine."

Moving forward, the researchers plan to study the molecular mechanisms by which gut microbes sense changes in the environment to affect the energy balance of the host. Another avenue of investigation centers on the idea that certain bacteria may prevent obesity by remodeling intestinal tissue and thereby decreasing the absorption of nutrients in the gut.
 
Good to take note of. I spent the Thanksgiving holiday in Lake Tahoe with my daughter. They made the comment that it is a "fad" now to sit in the lake even at this time of year. It is a body of water that is cold year round and hard to tolerate for long periods of time without a wet or dry suit on. Interesting to see confirmation of the benefits. Forwarded it to my family there. Thanks for posting.Eboard 10
 
Hi charade, only just saw your reply as I was looking at some of my recent posts so apologies for the delay.

Cold therapy can be useful in many ways, including that of fighting viruses. As discussed in one of the Cs sessions, cold exposure over the long-term raises body temperature by one or two degrees which is enough to elevate the temperature above 37 degrees, the level at which viruses convert their DNA from solid to liquid form to inject it into the host's cells.


Viruses convert their DNA into liquid form to facilitate cell infection

Viruses can convert their DNA from solid to fluid form, which explains how viruses manage to eject DNA into the cells of their victims. This has been shown in two new studies carried out by Lund University in Sweden.

Both research studies are about the same discovery made for two different viruses, namely that viruses can convert their DNA to liquid form at the moment of infection. Thanks to this conversion, the virus can more easily transfer its DNA into the cells of its victim, which thus become infected. One of the studies investigated the herpes virus, which infects humans.

"Our results explain the mechanism behind herpes infection by showing how the DNA of the virus enters the cell", said Alex Evilevitch, a researcher in biochemistry and biophysics at Lund University and Carnegie Mellon University.

Evilevitch stated that the discovery was surprising. No one was previously aware of the 'phase transition' from solid to fluid form in virus DNA. The phase transition for the studied herpes virus is temperature-dependent and takes place at 37°C, which is a direct adaptation to human body temperature. Evilevitch hopes that the research findings will lead to a new type of medicine that targets the phase transition for virus DNA, which could then reduce the infection capability and limit the spread of the virus.

"A drug of this type affects the physical properties of the virus's DNA, which means that the drug can resist the virus's mutations", said Alex Evilevitch.

The second study that Evilevitch and his colleagues have published recently is about bacteriophages, i.e. viruses that infect bacteria, in this case E coli bacteria in the human gastrointestinal tract. The results show that this virus also has the ability to convert its DNA from solid to fluid form. As with the herpes virus, the phase transition takes place at 37°C, i.e. adapted to human body temperature.

These two virus types, bacteriophages and the herpes virus, separated at an early stage in evolution, several billion years ago. The fact that they both demonstrate the same ability to convert their DNA in order to facilitate infection indicates that this could be a general mechanism found in many types of virus.

In previous studies, Alex Evilevitch and his colleagues have succeeded in measuring the DNA pressure inside the virus that provides the driving force for infection. The pressure is five times higher than in an unopened champagne bottle. This high pressure is generated by very tightly packed DNA inside the virus. The pressure serves as a trigger that enables the virus to eject its DNA into a cell in the host organism. It was this discovery that led to the two present studies, which were recently published in Nature Chemical Biology and PNAS.
 
Back
Top Bottom