Anatomical and biophysical aspects
The concept that the inflammatory barricade forms from collateral damage to healthy tissue surrounding an injury site is supported by Selye’s classic studies published along with his description of the granuloma or Selye pouch (
Figure 10).
25,
30 Moreover, research in cell biology and biophysics reveals the human body is equipped with a system-wide collagenous, liquid–crystalline semiconductor network known as the living matrix,31 or in other terms, a ground regulation system32,33 or tissue tensegrity matrix system (
Figure 11).
34
This body-wide network can deliver mobile electrons to any part of the body and thereby routinely protect all cells, tissues, and organs from oxidative stress or in the event of injury.
23,
31 The living matrix includes the extracellular and connective tissue matrices as well as the cytoskeletons of all cells.
31 Integrins at cell surfaces are thought to allow for semi-conduction of electrons to the cell interior, and links across the nuclear envelope enable the nuclear matrix and genetic material to be part of the circuitry.
23 Our hypothesis is that this body-wide electronic circuit represents a primary antioxidant defense system. This hypothesis is the central point of this report.
The extracellular part of the matrix system is composed mainly of collagen and ground substances (
Figures 11 and
and12).12). The cytoskeleton is composed of microtubules, microfilaments, and other fibrous proteins. The nuclear matrix contains another protein fabric composed of histones and related materials.
It is not widely appreciated that collagen and other structural proteins are semiconductors. This concept was introduced by Albert Szent-Györgyi in the Korányi memorial lecture in Budapest, Hungary in 1941. His talk was published in both
Science (Towards a New Biochemistry?)
35 and
Nature (The Study of Energy Levels in Biochemistry).
36 The idea that proteins might be semiconductors was immediately and firmly rejected by biochemists. Many modern scientists continue to reject semi-conduction in proteins, because living systems only have trace amounts of silicone, germanium, and compounds of gallium that are the most widely used materials in electronic semiconductor devices
. However, there are many ways of making organic semiconductors without using metals. One of the sources of confusion was the widely held belief that water was a mere filler material. We now know that water plays crucial roles in enzymatic activities and semi-conduction. Hydrated proteins actually are semiconductors, and have become important components in the global microelectronics industry. Organic microcircuits are preferred for some applications, because they can be made very small, self-assemble, are robust, and have low energy consumption.
37,
38
One of the leaders in the field of molecular electronics, NS Hush, has recognized Albert Szent-Györgyi and Robert S Mulliken for providing two concepts fundamental to the industrial applications: theories of biological semi-conduction, and molecular orbital theory, respectively.
39 In recent studies, given awards by the Materials Research Society in both Europe and the USA, scientists from Israel made flexible biodegradable semiconductor systems using proteins from human blood, milk, and mucus.
40 Silicon, the most widely used semiconducting material, is expensive in the pure form needed for semiconductors, and is inflexible and environmentally problematic. Organic semiconductors are predicted to lead to a new range of flexible and biodegradable computer screens, cell phones, tablets, biosensors, and microprocessor chips. We have come a long way since the early days when semi-conduction in proteins was so thoroughly rejected.
41,
42,
43
Ground substance polyelectrolyte molecules associated with the collagenous connective tissue matrix are charge reservoirs (
Figure 12).
The matrix is therefore a vast whole-body redox system. The glycosaminoglycans have a high density of negative charges due to the sulfate and carboxylate groups on the uronic acid residues. The matrix is therefore a body-wide system capable of absorbing and donating electrons wherever they are needed to support immune functioning.44 The interiors of cells including the nuclear matrix and DNA are all parts of this biophysical electrical storage and delivery system. The time-course of the effects of grounding on injury repair can be estimated in various ways.
First, we know from medical infrared imaging that inflammation begins to subside within 30 minutes of connecting with the earth via a conductive patch placed on the skin.
2,
3 Secondly, metabolic activity increases during this same period. Specifically, there is an increase in oxygen consumption, pulse rate, and respiratory rate and a decrease in blood oxygenation during 40 minutes of grounding.
45 We suspect that the “filling” of the charge reservoirs is a gradual process, possibly because of the enormous number of charged residues on the polyelectrolytes, and because they are located throughout the body. When charge reservoirs are saturated, the body is in a state we refer to as “inflammatory preparedness”.
This means that the ground substance, which pervades every part of the body, is ready to quickly deliver antioxidant electrons to any site of injury via the semiconducting collagenous matrix (see
Figure 16B).
These considerations also imply anti-aging effects of earthing or grounding, since the dominant theory of aging emphasizes cumulative damage caused by ROS produced during normal metabolism or produced in response to pollutants, poisons, or injury.
46 We hypothesize an anti-aging effect of grounding that is based on a living matrix reaching every part of the body and that is capable of delivering antioxidant electrons to sites where tissue integrity might be compromised by reactive oxidants from any source.
47,
48
Molecules generated during the immune response were also followed in the DOMS study.
7 Parameters that differed consistently by 10% or more between grounded and ungrounded subjects, normalized to baseline, included creatine kinase, phosphocreatine/inorganic phosphate ratios, bilirubin, phosphorylcholine, and glycerolphosphorylcholine. Bilirubin is a natural antioxidant that helps control ROS.
49–
53
Conclusion
Accumulating experiences and research on earthing, or grounding, point to the emergence of a simple, natural, and accessible health strategy against chronic inflammation, warranting the serious attention of clinicians and researchers. The living matrix (or ground regulation or tissue tensegrity-matrix system), the very fabric of the body, appears to serve as one of our primary antioxidant defense systems. As this report explains, it is a system requiring occasional recharging by conductive contact with the Earth’s surface – the “battery” for all planetary life – to be optimally effective.