Plain Language Summary
Our Kuiper belt originally had much more mass than today, but an instability caused by Neptune’s migration disrupted their orbits, ejecting most of this material from the Solar System, and simultaneously causing numerous collisions among these bodies. There were thousands of bodies like Pluto, with N2 ice (like the gas in Earth’s atmosphere, but frozen) on their surfaces, and this instability would have generated trillions of N2 ice fragments. A similar fragment, generated in another solar system, after travelling for about a half billion years through interstellar space, would match the size, shape, brightness, and dynamics of the interstellar object 1I/‘Oumuamua. The odds of detecting such an object, as well as more comet‐like objects like the interstellar object 2I/Borisov, are consistent with the numbers of such objects we expect in interstellar space if most stellar systems ejected comets and N2 ice fragments with the same efficiency our solar system did. This implies other stellar systems also had Kuiper belts and similar instabilities. There are hints that some N2 ice fragments may have survived in the Oort cloud of comets in our Solar System. ‘Oumuamua may be the first sample of an exoplanet born around another star, brought to Earth.