Good point! I think a simple experiment would entail just demonstrating that silk has protective properties, even if we don't know what they are. So if you can set up an experiment where EMF can be seen causing damage, then try blocking with silk, and even if you don't notice a particular change in the signal, you may observe reduced damage. At least that would be indicative of "something" going on, if nothing else.
Also found this one:
Granted these are optical experiments, but as mentioned, could have implications for other EMF frequencies. I bolded some parts I thought were interesting. I don't know what gives silk these properties, but I do wonder if it containing protein fibers, and proteins being said to have antennae, plays a role at all. DNA has been said to have some related properties as well, so perhaps there's a connection.
Also found this one:
Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties - PMC
Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first ...
www.ncbi.nlm.nih.gov
Silkworm silk has been used by the textile industry for thousands of years, due to its excellent physical and biomedical properties, such as flexibility, mechanical strength and most importantly, biocompatibility1,2,3. In particular, the biocompatibility of Bombyx mori silkworm silk has been demonstrated through its use in sutures for several millennia. Silk consists of protein fibers, typically produced by silkworms3 and spiders4. Recently, silk materials have attracted huge interest for photonics and optoelectronics. Currently existing research on silkworm silk photonics is mainly focused on relatively easily processed, so called regenerated silk. It means silk processed by dissolving purified silk fibers into aqueous solution of LiBr (lithiumbromide) and then casting, spin-coating, printing, or nanoimprinting it to form the desired structures3,5,6,7,8,9,10,11,12,13. Regenerated silk has been used to realize various optical elements and photonic devices, such as optical waveguides4,7, diffraction gratings and microlenses6, inverse opals10,12,14, light-emitting transistors15, lasers16, distributed feedback lasers17, and luminescent solar concentrators18. Regenerated silk can be functionalized by doping it with e.g., ZnSe and CdTe quantum dots to realize white-light emission13, or with azo-benzene sidegroups for optically induced birefringence and holography19. Proposals have also been made to use regenerated silk for implantable, bioresorbable silicon electronics devices20. Inkjet printed optical waveguides fabricated from regenerated fibroin on glass substrates have been demonstrated to exhibit losses of <1 dB cm−1 at 633 nm7, which is comparable with polymethyl methacrylate (PMMA) plastic fibers’ loss of ~0.1 dB cm−1 21, silicon strip waveguides (2 ±1) dB cm−1 22, and TiO2 strip waveguides (2 ± 1) dB cm−1 23.
However, even though printed silkworm silk waveguides and natural spider silk fibers have been characterized previously4,7, little research has been conducted on the waveguiding properties of non-regenerated silkworm silk. What makes non-regenerated silk particularly interesting, compared to the more easily utilizable regenerated silk, is that the fibers are naturally organic waveguides without any post-processing. The only processing step required is the degumming process (to be explained later), which does not involve using and subsequently dialyzing metal salts that are byproducts from typical regeneration processes. The only waste product is the sericin protein3, which makes silk fibers friendlier for the environment than regenerated silk. Environmental friendliness and biocompatibility, combined with simple fabrication, may be the key arguments for using nonregenerated silk in various medical applications, where the fiber could be embedded in living tissue, and localized optical power delivered thereby directly into the tissue.
Granted these are optical experiments, but as mentioned, could have implications for other EMF frequencies. I bolded some parts I thought were interesting. I don't know what gives silk these properties, but I do wonder if it containing protein fibers, and proteins being said to have antennae, plays a role at all. DNA has been said to have some related properties as well, so perhaps there's a connection.