The Beginning Of The Plague?

Psyche said:
The cosmology guys speculated that the Tunguska event or body could have been the source for the deadly Spanish flu back in 1918:

Tunguska: Comets, Contagion and the Vernadskiy Mission to NEA 2005NB56

_http://journalofcosmology.com/Panspermia5.html

On June 30th, 1908, there was a massive explosion over Tunguska, in Central Siberia. A number of scientists have proposed that this Tunguska Phenomenon was caused due to the tangential passage of an astral body that grazed the Earths’ atmosphere, underwent a partial explosion and later entered a heliocentric orbit. It has also been argued that astral bodies might deposit microbes and viruses on Earth (contributing to evolution and diseases) and may become contaminated with Earthly microbes. [...]

As detailed by Joseph (2009a) [Comets and contagion. _http://Cosmology.net/Comets.html]:

"In 2005, scientists from the Armed Forces Institute of Pathology in Washington, D.C., resurrected the 1918 virus from bodies that had been preserved in the permanently frozen soil of Alaska. They soon discovered that a completely new virus had combined with a old virus, exchanging and recombining genes, creating a hybrid that transformed mild strains of the flu virus into forms far more deadly and pathogenic. They also confirmed that the 1918 Spanish flu virus originated in the sky, first infecting birds and then spreading and proliferating in humans."

It's a pity he doesn't give a reference to back up this claim. Anyone know if there one?
 
Perceval said:
It's a pity he doesn't give a reference to back up this claim. Anyone know if there one?
There is some info here: _http://journalofcosmology.com/Panspermia5.html

"2. TRANSFER OF MICROORGANISMS FROM EARTH TO OUTER SPACE

The Tunguska Space Body (TSB) is the only known body to have had an extremely close interaction with Earth; just about ~5÷10 km above the Earth’s surface, only to escape into space (Napier 2009). We are aware of the impact TSB left on Earth. However we are not aware of the impact the interactions left on the TSB. It would be interesting to investigate if any of Earth’s atmospheric gasses or microorganisms became incorporated into the TSB when it bounced off the upper atmosphere.

It is known that microorganisms exist in significant concentrations in Earths’ atmosphere (Burrows et al., 2009; Griffin 2004; Wainwright et al., 2010). Microorganisms have been found in air samples collected at heights ranging from 41 km (Wainwright et al., 2010) to 77 km (Imshenetsky, 1978). The natural mechanisms which transport microorganisms to the atmosphere are storm activity, volcanic activity, monsoons, and impact events (Joseph and Schild 2010; Wainwright et al., 2010).

In fact, a particular long term study conducted close to the Tunguska Phenomenon site, in the skies of southwestern Siberia, found significant concentrations of culturable microorganisms over an altitude range of 0.5–7 km (Andreeva et al., 2002; Borodulin et al., 2005). This height range is similar to the height range of ~5÷10 km where the TSB interacted with Earth’s atmosphere. Of course, the TSB-Earth interaction was fierce and explosive. However there is a possibility of contamination, either of Earth’s microorganisms into the TSB, or organisms which may have resided in the TSB being deposited on Earth, or both.

3. DISEASES FROM SPACE?

Hoyle, Wickramasinghe, Napier and others (Hoyle and Wickramasinghe 2000, Napier and Wickramasinghe 2010; Wickramasinghe 2010; Wickramasinghe et al., 2009) have provided considerable evidence indicating microbial life can flourish within the heart of comets and may be deposited on other planets including Earth. Wainwright et al., (2010), based on evidence of bacteria in the upper atmosphere and stratosphere, argue that life may be continually incoming from space and outgoing from Earth. Joseph (2009b; Joseph and Schild 2010) has developed a detailed model explaining how microbes can be lofted into the stratosphere and periodically ejected into space during particularly powerful solar storms. Joseph (2009b; Joseph and Schild 2010) has also provided and reviewed evidence that microbes can travel from planet to planet and solar system to solar system encased in asteroids, comets and other stellar debris, and that they can survive the impact and heat of ejection and reentry into the atmosphere. Therefore, there is good reason to suspect that a stellar object striking and skimming along the upper atmosphere could eject microbes into the atmosphere of Earth and become contaminated with microbes already present at these heights.

Joseph (2000, 2009c; Joseph and Schild 2010) has developed a detailed genetic model of cosmic evolution, and has argued that as microbes and viruses are transferred from planet to planet, they exchange and acquire DNA. According to Joseph (2000, 2009c) these genes were then transferred to to the eukaryotic genome, contributing to the evolution of multi-cellular life leading to humans. Likewise, Wainwright et al., (2010) propose that incoming and outgoing microbes may exchange DNA via horizontal gene transfer, and this genetic exchange contributes to the evolution of life on Earth.

Wickramasinghe (2010) also believes that space-traveling microbes and viruses contribute to evolution, but are also responsible for "errors" introduced into the genome. These "errors" result in disease, disability, and death. Hoyle and Wickramasinghe (1979, 1986) have referred to this as "diseases from space."

Is there any evidence that microbes and viruses were deposited on Earth by the TSB or following the Tunguska impact in 1908? The evidence is indirect at best, i.e. the 1918 flu epidemic which killed over 20 million people world wide (Joseph 2009a). It is unknown if the TSB is comet Encke. However, Comet Encke made an extremely close approaches to Earth on June 16, 1908, and again on October 27 1914, and was at perihelion on 1918. And with each approach, Comet Encke shed ice, rock and dust which streaked through the atmosphere of Earth.

According to Hoyle and Wickramasinghe (1979, 1986, 2000; Wickramasinghe 2010; Wickramasinghe et al., 2009) under these circumstances microbes and viruses would be shed from the comet and would be deposited on Earth and could induce disease. Wainwright et al., (2010) argue that microbes from space would exchange DNA with microbes of Earth, and the same has been said of viruses (Joseph and Schild 2010). There is also considerable evidence that the 1918 flu epidemic was due to gene mixing between an already established virus and a completely unknown "new" virus (Joseph 2009a).

As detailed by Joseph (2009a):
"In 2005, scientists from the Armed Forces Institute of Pathology in Washington, D.C., resurrected the 1918 virus from bodies that had been preserved in the permanently frozen soil of Alaska. They soon discovered that a completely new virus had combined with a old virus, exchanging and recombining genes, creating a hybrid that transformed mild strains of the flu virus into forms far more deadly and pathogenic. They also confirmed that the 1918 Spanish flu virus originated in the sky, first infecting birds and then spreading and proliferating in humans."
 
This paper just came into my attention. I think it is very relevant in the sense that the fragments of hemorrhagic viruses that were speculated to be the cause of the Black Death, are listed as part of our genome, indicating that life on Earth has been exposed to rather dangerous viruses through our evolutionary history which then effected changes in our DNA.

The second paper was linked in the first one and is even more interesting. It expands and backs up Bryant M. Shiller's explanations on "Origin of Life: The 5th Option" (or so it seems to me!). Keeping in mind that "transposable elements" (TE) - which was once considered "junk" DNA - is viral in its origin, it would explain why humanity benefits from periodic plague diseases to give a kick-start or "reformation" to our genetic makeup and accelerate evolution or change through cometary impacts. Both articles are very long, but I bolded in black and red some relevant information. Enjoy!

Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912400/

Abstract

Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological advantage to the species. In addition, the viruses could also benefit, as some resistant species (e.g. bats) may serve as natural reservoirs for their persistence and transmission. Given the stringent limitations imposed in this informatics search, the examples described here should be considered a low estimate of the number of such integration events that have persisted over evolutionary time scales. Clearly, the sources of genetic information in vertebrate genomes are much more diverse than previously suspected.

Author Summary

Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented. In this comprehensive study, we compared sequences representing all known non-retroviruses containing single stranded RNA genomes, with the genomes of 48 vertebrate species. We discovered that as long ago as 40 million years, almost half of these species acquired sequences related to the genes of certain of these RNA viruses. Surprisingly, almost all of the nearly 80 integrations identified are related to only two viral families, the Ebola/ Marburgviruses, and Bornaviruses, which are deadly pathogens that cause lethal hemorrhagic fevers and neurological disease, respectively. The conservation and expression of some of these endogenous sequences, and a potential correlation between their presence and a species' resistance to the diseases caused by the related viruses, suggest that they may afford an important selective advantage in these vertebrate populations. The related viruses could also benefit, as some resistant species may provide natural reservoirs for their persistence and transmission. This first comprehensive study of its kind demonstrates that the sources of genetic inheritance in vertebrate genomes are considerably more diverse than previously appreciated.

Introduction

The integration of a DNA copy of the retroviral RNA genome into the DNA of infected cells is an essential step in the replication of these viruses. Portions of DNA tumor virus genomes can also become integrated into cellular DNA, but this is a relatively rare event, detected by selection of a clone of cells that express the viral oncogene(s). While such integration events occur routinely in somatic cells, retroviral DNA sequences are also integrated in the germlines of many hosts, giving rise to inherited, endogenous proviruses. It has been reported that sequences from viruses that contain RNA genomes and do not replicate through a DNA intermediate, may also be copied into DNA and become integrated into the germline cells of plants and insects [1], [2], [3]. That such events can have biological impact was demonstrated in the case of sequences derived from the positive strand RNA genome of a Dicistrovirus (Israeli acute paralysis virus), which were integrated into the germline of bees from different hives [2]. Bees with genomes that contain sequences encoding a portion of the structural protein of this virus are resistant to infection by this same virus. Similar observations have been made in mice with endogenous retroviral sequences related to a capsid gene (Fv-1 locus) which confers resistance to infection by some retroviruses [4]. These observations suggest that chronic infections of a host with both retroviruses and non-retro RNA viruses can result in germline integration events that produce a host expressing some viral functions that confer an advantage to the species; resistance to subsequent infection by that virus.

With these ideas in mind, we undertook a search in the germline genomes of vertebrates for DNA sequences that may be related to any of the known non-retroviral families of viruses that contain single-stranded RNA genomes. As our analyses were being completed, an independent group of investigators reported that sequences derived from the nucleocapsid gene (N) of ancient relatives of such a virus, the Borna disease virus (BDV), are integrated in the genomes of several mammalian species [5]. Here we report the results of our comprehensive search in which 5,666 sequences from non-retroviruses with RNA genomes were compared with the DNA sequences in the genomes of 48 vertebrate species. Our studies have not only confirmed the integration of BDV N-related sequences, but they have also revealed that sequences related to the matrix and polymerase genes of this virus have been integrated into the germlines of various vertebrate species. In addition, we have discovered genome integrations of viral gene sequences from other members of the order Mononegavirales, with the most prominent related to Ebolaviruses and Lake Victoria Marburgvirus. It is noteworthy that these viruses exhibit extremely high mortality rates in some susceptible species, for example reaching 80% in horses that develop Borna disease, and up to 90% in humans infected with Ebolavirus [6].

In addition to possessing linear non-segmented, negative sense single-stranded RNA genomes, the Mononegavirales have several other features in common, including a similar gene order and transcription strategy in which genes are flanked by specific transcription start and stop sites and are expressed in a gradient of decreasing abundance (Figure 1, for review see: [7]). The 8.9 Kb BDV genome encodes information for at least six proteins. These viruses form a unique family, the Bornaviridae, and they are the only viruses in the Order to replicate and transcribe their genomes within the nucleus of the infected cell [8]. Sheep, horses, and cows are among the natural hosts for this enzootic virus; while there are a number of other experimental hosts, virus replication under such conditions is poor, chronic, and slow [8]. Many tissues can be infected in susceptible hosts, but disease symptoms are commonly neurological. Natural infections of humans are at best controversial, and infectious virus has been isolated from this source only infrequently [9]. Given that the BDV is an RNA virus, its genome sequence conservation among isolates of many mammalian species, separated in both time and geographic locations, is surprisingly high. This suggests strong selection pressure to retain a core sequence for virus viability in a reservoir species with which an evolutionary equilibrium has been established.

The Ebola (EBOV)- and Marburg (MARV)- viruses comprise the two genera of the family Filoviridae. Their approximately 19 Kb genomes are replicated and transcribed in the cytoplasm of infected cells. EBOV and MARV cause highly lethal hemorrhagic fever in humans and have high potential for individual-to-individual transmission. Several strains of EBOV are known, including the Zaire and Sudan strains in Africa, and the Reston strain in the Philippines. The latter has only been associated with monkeys, but a recent report also found infection by this strain in domestic swine, and the presence of antibodies in six exposed farm workers [10]. Recent evidence suggests that bats are the natural reservoir of these zoonotic agents [[11], and references therein,[12]].

[...]How did the endogenous RNA virus-likes sequences become incorporated into the genomes of their hosts?

The genes of viruses in the Order Mononegavirales are transcribed as mono- or dicistronic mRNAs (Figure 1). The distribution of endogenous virus-like sequences that were detected here, appear to be limited to one or very few per specie. This, and the fact that single genes are represented in diverse locations, is suggestive of a mechanism that involved the reverse transcription and integration of DNA copies of viral mRNAs by LINE elements, much as cellular pseudogenes are produced. Indeed, we found several cases in which landmarks, or remnants of landmarks, characteristic of Line element-mediated insertion are associated with specific Bornavirus- and Filovirus-related integrations. These include direct repeats flanking transcription start sites and 3′ polyA sequences (Table 3). In many additional cases, only 3′ polyA sequences were observed (data not shown). The fact that direct repeats are not found for some endogenous sequences is not surprising, as these repeats may be just 2 nucleotides long and likely have experienced numerous mutations from the time of initial integration. However, from the informative examples in Table 3 we conclude that some, if not all, RNA virus-related sequences have been integrated into their host genomes by LINE elements via target-primed reverse transcription from ancient viral mRNAs.

When were the RNA virus-like sequences integrated?

In some cases, the integrations of virus-related genes were observed in closely related species descended from each other, allowing an estimate of the oldest common ancestor of these integrations. For example, a rodent lineage (including mice and rats) contains BDV gene N- and L-related endogenous sequences, and a separately derived primate lineage (comprising marmosets, macaques, chimps, and humans) contains endogenous BDV gene N-related sequences integrated into seven different places in the genomes. The rodent and primate lines differ from each other in their integration sites, but within both lineages identical sites of integration and stable copy numbers of genes are observed, indicating decent through lineages of viral genes integrated in the past. In the primate line these sites first appear in the present day marmosets and have been retained over forty million years from a common ancestor of marmosets and humans (Figure 2). Based on the degree of sequence homology of BDV-related genes in different host genomes, most of these integrations seem likely to have originated in the same time frame, with the exception of the integration in squirrels, which has much higher sequence homology to the present day virus (Table S1). We stress that integration events illustrated in Figure 2 appear to have been independent events, and do not come from a single ancient integration: no synteny in integrated sequences and adjacent chromosome is observed across species.[...]

Preservation of open reading frames

The absence of the stop codons in some integrations points to strong selective pressures towards maintenance of full-length open reading frames. This is in contrast to the actual peptide sequences that appear to be undergoing neutral drift. Over the 20 million years of evolution in rodents and 40 million years in other mammals, we expect a 5–10% nucleotide change or approximately 15–30% codon change, if there is no selective pressure against fixation of such events in the population. Accordingly, one would expect to observe a stop codon in 1.8–3.6% of the codons. This is, indeed, the case for the majority of the integrations (Table 4 and Table S8). In contrast, several integrations show signs of strong positive selection, namely those related to the BDV N gene in humans, microbats, rodents, and other animals, and both the EBOV/MARV NP and VP35 gene-related integrations in bats and tarsier. Some integration events, including the BDV N-like sequences in humans (e.g. hsEBLN-1) and the EBOV VP35-like sequences in microbats (mlEEL35) have maintained nearly full-length open reading frames (Table 2). The probability of having no stop codon in the longest of these, the BDV gene N-like integration in humans, is one in eight hundred, suggesting that at some time, past or present, there was strong selective pressure to keep and express this ancestral viral gene.

Are some endogenous RNA virus-like sequences expressed?

Expressed sequence tags (EST) were identified for four integrated copies of the BDV N-related genes in humans (hsEBLN-1 through hsEBLN-4). The chromosome 3 integration (hsEBLN-2) is actually tiled on Affymatrix chips to detect mRNAs from human tissues. Analysis of a very large diversity of tissue types show low levels of this transcript in most tissues tested, intermediate levels in thymus, olfactory bulb, fetal thyroid, liver, prefrontal cortex, CD34 cells, endothelial cells and dendritic cells, and high levels in CD4 and CD8 T-cells (Figure S2). In susceptible species, BDV replicates mainly in cells of the nervous system, but viral nucleic acids and proteins have been isolated from peripheral blood mononuclear cells. It is clear that several BDV N-like endogenous sequences are expressed as mRNAs in human tissues. Expression of mRNA from these endogenous sequences was also detected in several cell lines in cell culture [5].

Is the expression of endogenous RNA virus-like sequences biologically relevant?

BDV is an enzootic virus, with natural infections occurring in sheep, horses, and cattle [18], in which serious, often fatal, neurological symptoms are observed. These animals have no detectable copies of the BDV-related endogenous sequences. Furthermore, species in the primate and mouse/rat lineages, which contain endogenous N-like sequences, are generally resistant to the virus, or the virus is observed to replicate poorly with little or no symptoms in these animals [19] (Table 5). In cows, which do have endogenous sequences related to the BDV N gene, there is apparently no present day selection for its coding capacity (Table 4), and cows are known to be susceptible to Borna disease. Thus, there appears to be a general correlation between natural resistance to the pathogenic effects of the virus and the potential for expression of BDV N-like endogenous sequences in a host. However, as has been observed with Fv-1 in mice [20], natural resistance can be overcome under experimental conditions in which animals or cell cultures may be subjected to large doses of the virus (Table 5).[...]

EBOV and MARV are zootropic viruses that cause infections with some of the highest mortality rates in humans, primates, and pigs. Recent studies have suggested that megabats, specifically Hypsignathus monstrosus, Epomops franqueti, and Myonycteris torquata, could be potential natural reservoirs for EBOV [22]. Later studies also identified microbat Mops condylurus, as well as several other megabats, as potential reservoirs [11]. Some of the bats actually carry live virus, yet exhibit no visible symptoms of disease. There are more than 1,100 recognized species of bats, comprising about a fifth of all mammalian species [23], but the genomes of only two bat species have been sequenced. Our results show that at least one of them, the microbat Myiotis lucifugus, has detectable integrations of EBOV/MARV-like sequences, with several of these showing strong selective pressure for maintaining open reading frames (Table 4).

The most widespread EBOV/MARV integrations observed in this study are derived from the major viral nucleocapsid gene NP and the minor nucleocapsid and polymerase complex cofactor gene VP35. The endogenous sequences related to the NP protein align with the amino-terminal region (Figure 5), which is conserved among these viruses and the Paramyxovirus family {Paramyxovirus includes measles (think of hemorraghic measles), mumps and parainfluenza, all on the rise as of lately}, and is critical for NP-NP protein interactions [24], [25]. The microbat sequence mlEELN-1, for example, covers most of this region, including a highly conserved stretch of amino acids and part of a structurally disordered acidic region, which is thought to play a role in the incorporation of the protein into virus particles [24].[...]

Discussion

This survey has uncovered a fossil record for currently circulating RNA virus families that stretch back some 40 million years in the evolution of host species. The error rate per replication of the DNA genomes of the hosts is much lower than the error rates of RNA-dependent RNA synthesis, the mechanism by which these viruses replicate their genomes. Consequently, the host genome contains a more accurate record of the archival genes of viruses with RNA genomes than the related present-day viruses. Considering the relatively high rate of mutation in RNA viruses, and the stringent criteria we utilized to detect homologies, what is reported here should be taken as an underestimate of such viral gene integration events. The most common events we detected derive from certain viruses that contain negative single strand RNA genomes. This might be a reflection of some unusual properties of such viruses and their hosts. For example, the viruses could have high sequence conservation or the hosts could have been selected to retain specific viral sequences that confer resistance to subsequent infection. However, the results of this search are as interesting for what was not found as what was found.

The endogenous viral sequences that were identified with highest confidence are all related to currently circulating viruses in the Order Mononegavirales, which contain single negative strand RNA genomes. Furthermore only two of the four recognized families in this Order are represented, the Bornaviruses (BDV) and Filoviruses (EBOV and MARV). In one species, zebrafish, we also found endogenous sequences related to members of a possible new Taxon in this viral Order, comprising Midway and Nyamanini viruses [33]. These results seem especially noteworthy, as the genomic insertions reported in plants and insects are all derived from viruses with plus strand RNA genomes, such as the Flaviviruses and the Picornaviruses [1], [2], [3]. Furthermore, the data presented here (Tables 3 and S1) indicate that the endogenous sequences in vertebrate genomes were likely integrated via target-primed reverse transcription of ancestral viral mRNAs by LINE elements. As all viruses produce mRNAs during active infection, the selection or retention of endogenous sequences from mainly one viral Order, is all the more striking.

The cellular location of viral replication does not appear to be a critical factor in the insertion of endogenous sequences, because the Bornaviruses replicate in the nucleus and the Filoviruses, in the cytoplasm. We note, in addition, that no endogenous sequences were found that are related to viruses in the Orthomyxovirus family, such as the influenza viruses, which contain segmented negative strand RNA genomes and also replicate in the nuclei of infected cells. However, it is possible that some feature of the mRNAs produced by these viruses is recognized preferentially by LINE machinery, or can promote access to such machinery in the nucleus, and such notions can now be tested. LINE elements are known to be active in the germline [34], and it is possible that the germline cells of some infected vertebrates may have been especially susceptible to infection by the ancestors of these viruses. Finally, DNA copies of mRNAs from other RNA viruses may, indeed, have been integrated into the germlines of infected vertebrates, but are no longer recognizable. Once DNA copies are inserted into the host genome one would expect the mutation rate of these sequences to be reduced by about four orders of magnitude compared to the genes in replicating RNA viruses, rapidly separating the virus sequences of today from the those of the past. Indeed, a DNA copy of an RNA viral genome trapped in a host chromosome is a window on the RNA virus sequences of the past. In this context, the high conservation of the BDV genome [35], [36] may partially explain our ability to detect the related endogenous sequences.

By far the most readily observable endogenous virus-like elements uncovered in our study were related to BDV. For example, these germline integrations persisted for millions of years as recognizable copies of the N gene in primate and rodent lineages, and of the N and the L genes in bats. Furthermore, an initial event appears to slow or stop further integration events, suggesting that the viral gene product(s) can inhibit further virus infection, or eliminates the need to further select for the new integration event. Several integrations also appear to have been selected for their protein coding capacity, with no stop codons emerging over the past forty million years. This is particularly striking because the amino acids in these genes appear to be undergoing the expected frequency of neutral drift, at least among shared integrations in the primate lineage.

There are several possible mechanisms by which an endogenous viral gene product may inhibit the subsequent infection of a cell or animal by the same virus. For example, synthesis from the endogenous sequence of an RNA molecule that is partially complementary to the infecting viral RNA could trigger an early interferon or RNA interference response. In addition, translation of an mRNA from the endogenous viral sequence would lead to production of a protein or peptide that is similar, but not identical to that of the infecting viral protein. In the case of nucleocapsid-like proteins (N, NP), such an endogenous gene product could block virus replication or result in the assembly of faulty, non-infectious particles. This would require genetic drift to produce missense mutations but no stop codons, which is the case for some endogenous sequences that we have discovered. Because the function of these proteins requires appropriate multimerization, even a small number of abnormal or defective, endogenously produced monomers could exert a substantial biological effect. Sequence differences in proteins expressed by the endogenous L- and VP-35-like genes could also result in assembly of defective virus particles. Such particles might then become good immunogens, providing immune protection in the host. It is also possible that production of glycoprotein peptides encoded in endogenous viral sequences might block infections by viruses with similar glycoproteins. Examples of the various resistance mechanisms cited above have been shown to exist with several virus groups. This includes experiments in rats, where ectopic expression of individual proteins of the Bornavirus N, X, and P genes, but not their mRNA, inhibits virus replication [37].

There is likely strong selection pressure to establish a resistance mechanism against Bornavirus and Ebolavirus/Marburgvirus, given their high mortality rates in susceptible species. We have noted that the natural hosts of BDV, such as cows and horses, have no detectible sequences related to the BDV N gene (Table 1), or that the integration is under no present-day selection (Table 4). It has also been reported that resistance to the neurological symptoms of BDV is genetically inherited in rats and is encoded in an unknown host gene [38]. It would now be quite interesting to test whether or not that gene is the BDV-related rodEBLN sequence. It would also be interesting to examine the endogenous sequences in the human population in greater detail, to determine if there are polymorphisms or deletions that might correlate with neurological diseases, which could lead to a re-examination of the role of BDV in such conditions.

Natural resistance to currently circulating EBOV and MARV may allow species to serve as asymptomatic reservoirs for these viruses. In microbats, we identified endogenous sequences related to the NP and VP35 genes of these Filoviruses, in addition to the N and L genes of BDV. Bats of different species have been identified as possible natural reservoirs of EBOV and MARV in areas of human outbreaks in Africa [39], [40], [41]. Recent studies confirm that these viruses co-circulate in Gabon, where bats infected by each virus are found. It should now be possible to ask if there is any correlation between the presence and properties of the endogenous sequences in the various bat species and their ability to serve as natural reservoirs for these negative strand RNA viruses.

In summary, our studies have made it clear that ancient relatives of some RNA viruses have left DNA copies of their sequences in the germline cells of their vertebrate hosts. The sources of vertebrate genetic inheritance are, therefore, considerably more diverse than previously appreciated. A number of recent reports from tissue culture experiments or clinical studies have presented evidence for the incorporation of DNA sequences corresponding to all or part of the genomes of a variety of infecting RNA viruses into host cell DNA [e.g. 5] [42], [43], indicating that such events might occur in somatic tissues with some frequency. However, the mechanisms of integration seem to be varied, and the biological impacts have yet to be elucidated. Whether the germline integrations that we have identified are simply accidents or, as we suspect, may sometimes provide the host with an important selectable advantage, can now be tested.[...]
 
Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501640/

Abstract

In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.

Introduction

The importance of transposable elements (TEs) to stress responses and adaptation was first proposed by Barbara McClintock who was also the discoverer of TEs (McClintock 1956, 1984). Since then much groundbreaking work has substantiated the view that TEs play a significant role in evolution (Georgiev 1984; Syvanen 1984; Finnegan 1989; Brosius 1991; McDonald 1993; Kidwell and Lisch 1997; Fedoroff 1999; Shapiro 1999; Bennetzen 2000; Bowen and Jordan 2002; Jurka 2004; Kazazian 2004; Biémont and Vieira 2006; Volff 2006; Wessler 2006; Feschotte and Pritham 2007; Muotri et al. 2007; Beauregard et al. 2008; Böhne et al. 2008; Hua-Van et al. 2011; Werren 2011). Building on this body of work, we have proposed TEs as powerful facilitators of evolution (Oliver and Greene 2009a) and have subsequently gone further than others by formalizing this general concept into an explicit, comprehensive, predictive, and testable hypothesis, which we call the “TE-Thrust hypothesis” (Oliver and Greene 2011). The basis of the TE-Thrust hypothesis is that TEs are powerful facilitators of evolution that can act to generate genetic novelties in both an active mode and a passive mode. Active mode: by transposition, including the exaptation of TE sequences as promoters, exons, or genes. Passive mode: when present in large homogeneous populations, TEs can cause ectopic DNA recombination resulting in genomic duplications, deletions or rearrangements (including karyotypic changes). Fecund lineages, those with many species (e.g., rodents and bats, which together make up 60% of mammals), are generally rich in viable (i.e., capable of activity) and active TEs, whereas nonfecund lineages (e.g., monotremes) have mainly nonviable (i.e., incapable of activity) and inactive TEs. Evolutionary transitions, for example, the evolution of the higher primates and evolutionary innovations, such as the mammalian placenta, also appear to be facilitated by TEs (Oliver and Greene 2011). An outline of the TE-Thrust Hypothesis is:

Many eukaryote lineages are able to tolerate some sacrifices in the present, that is, a genomic “load” or population, of mostly controlled, but possibly fitness-reducing TEs. Such lineages may, thereby, fortuitously, gain a continuum of “intra-genomic potential” whose extremities are conveniently described as “adaptive potential” and “evolutionary potential.” This intragenomic potential may be realized in the present, and/or in the descendant lineage(s) of the future. Note that this does not imply any “aim” or “purpose” to evolution, or any ability of evolution to “see” into the future.

As environmental or ecological factors change, or the lineages adopt new habitats, these intragenomic potentials can be realized. For example, adaptive potential can be realized to give small adaptive changes within a lineage, over short periods of time, such as the evolution of insecticide resistance, when insecticides become prevalent in the environment. Evolutionary potential can be realized, over much longer periods of time, perhaps in adaptive radiations, as in some rodents or bats.

At least some unicellular eukaryotic organisms do not appear to tolerate a genomic load of TEs (Galagan and Selker 2004; Pritham 2009), which suggests that TE-Thrust does not operate in all extant biological lineages. However, it is noteworthy that most eukaryotic species known to lack TEs are intracellular parasites with small genomes, including members of the Babesia, Cryptosporidium, and Plasmodium genera (Pritham 2009). This could be due to selection for small cell size and/or because the genomic plasticity engendered by TEs may not provide a net advantage to nonfree-living organisms that exist within a stable environment.

TE-Thrust and Punctuated Equilibrium

Eldredge and Gould (1972) posed the concept of punctuated equilibrium from studies of the fossil record, as opposed to the then prevailing concept of phyletic gradualism. There is now independent support for punctuated equilibrium from studies of extant taxa (Cubo 2003; Pagel et al. 2006; Mattila and Bokma 2008; Laurin et al. 2012), from co-evolution (Toju and Sota 2009), and in extant and ancient genomes of Gossypium species due to intermittent TE activity (Palmer et al. 2012). TE-Thrust provides an intragenomic explanation of punctuated equilibrium (Oliver and Greene 2009a,b, 2011), as has also been suggested by Zeh et al. (2009), via epigenetic changes, and/or endogenization of retroviruses, in response to stress, and Parris (2009), via endogenization of retroviruses and environmental change.

The actual processes of speciation events seem to be poorly understood, but new species are said to emerge from many differing and rare single events (Venditti et al. 2010). However, two almost essential components seem to be necessary: reproductive isolation and intragenomic variation. Of these, intragenomic variation can be readily supplied by the hypothesized TE-Thrust (Oliver and Greene 2011), and reproductive isolation can be provided by a variety of means, including karyotypic changes, polyploidy, hybridization, and physical environmental or ecological factors (Venditti et al. 2010).

Much TE activity (active TE-Thrust) is thought to occur in intermittent bursts that interrupt more quiescent periods of low activity (Bénit et al. 1999; Marques et al. 2005; Cantrell et al. 2005; Pritham and Feschotte 2007; de Boer et al. 2007; Ray et al. 2008; Zeh et al. 2009; Erickson et al. 2011). These punctuation events can occur especially after intermittent infiltrations or amplifications of TEs. New acquisitions of TEs can be due to:

Intermittent horizontal transposon transfer (HTT) (Schaack et al. 2010). This appears to be relatively rare, and probably tends to occur more often with some DNA-TEs, LTR retro-TEs, and the Bov-B LINE.
The de novo synthesis of chimeric elements, for example, the hominid specific SVA (Wang et al. 2005). This is probably rare.
The de novo syntheses of various SINEs, the younger ones (<100 Myr) of which are lineage specific (Piskurek et al. 2003; Kramerov and Vassetzky 2011). This is probably rare.
Intermittent endogenizations of various RNA viruses (Bénit et al. 1999; Belyi et al. 2010; Horie et al. 2010). This may be relatively common, especially in mammals.
Hybridization, especially in angiosperms (Michalak 2010). This appears to be common.
Intermittent de novo modifications to successive families of TEs (e.g. L1 LINEs). This is relatively common.

An example of an intermittent burst is the L1 LINE in ancestral primates, where among a large number of overlapping families, L1PA6, L1PA7, and L1PA8 were apparently amplified intensively around 47 Mya. This seemingly contributed to a very large Alu SINE, and retrocopy, amplification at this time (Ohshima et al. 2003). TEs can result in the acceleration of the evolution of genes in a myriad of ways (Böhne et al. 2008; Goodier and Kazazian 2008; Hua-Van et al. 2011), providing a means for rapid species divergences in the affected lineages.

Modes of TE-Thrust

All the hypothesized modes of TE-Thrust shown below are consistent with the data tabulated in Oliver and Greene (2011), but are expressed herein in different ways. All of them refer only to the potential for adaptation or evolution due to the hypothesized TE-Thrust. As other facilitators of evolution will possibly also be active in addition to TE-Thrust, and as environmental and ecological factors can frequently change, all these hypothesized capabilities of TE-Thrust need to be predicated by “if all else is equal”. These modes of TE-Thrust are extremes of continuums, so intermediate modes must occur.

Mode 1. Evolutionary potential may be realized, in concert with, or following, significant intermittent bursts of TE activity, in viable and heterogeneous TE populations, whether large or small. This can underlie what we designate as “Type I” punctuated equilibrium (stasis with punctuation events), due to intermittent active TE-Thrust.

Mode 2. Evolutionary potential may be realized, in concert with, or following, significant bursts of TE activity, in large viable and homogenous TE populations. This can result in what we designate as “Type II” punctuated equilibrium (gradualism with punctuation events) due to both ongoing TE-Thrust (largely passive), and to intermittent active TE-Thrust. If the TE population is small, then only intermittent active TE-Thrust is likely to occur as per mode 1.

Mode 3. Nonviable heterogeneous TE populations, whether large or small, may result in evolutionary stasis, due to a lack of both active and passive TE-Thrust.

Mode 4. If a nonviable TE population is both large and homogeneous, and not too degraded by mutations, then gradualism type evolution may occur, due largely to passive TE-Thrust. If the TE population is small, then little TE-Thrust is likely to occur as per mode 3.

An Expansion of the TE-Thrust Hypothesis

Herein, the TE-Thrust hypothesis is further expanded from its original formulation. We acknowledge that in addition to TE-Thrust, other nongenomic facilitators of evolution may play a part in radiations and evolution, such as dynamic external factors, including geological, environmental, and ecological changes. Such factors may result in fragmentation of populations into small local demes, or larger disjunct sub-populations, which can result in reproductive isolation with possible divergence into novel taxa (Wright 1931; Eldredge 1995; Jurka et al. 2011). In addition to alleles drifting to fixation or extinction in demes, TE families likely also do so (Jurka et al. 2011) and we are in agreement with this. Additionally, in TE-Thrust we hypothesize that novel TEs as described above, may very occasionally be introduced into, or arise within, some demes or disjunct populations, but not into others, ultimately causing evolutionary transitions or the evolution of new taxa. We view the carrier subpopulation (CASP) hypothesis (Jurka et al. 2011) to be complementary to TE-Thrust, as it is about the fixation of TEs in populations and the details of mechanisms, or origins, of speciation, which were previously not included in the TE-Thrust hypothesis. The CASP hypothesis gains some support from the cotton genus (Gossypium) specific Gorge retro-TEs (Palmer et al. 2012), as Gorge seems to have spread to fixation in a small progenitor population of Gossypium. Indeed, both hypotheses are in agreement in strongly relating TEs to speciation and evolution. However, we suggest that karyotypic changes due to TE presence and activity, are among the factors that produce the reproductive isolation necessary for speciation, although we agree that geographic isolation into demes, niche availability, and many other phenomena (e.g., pheromone changes in insects) are also important factors.

We note that adaptive evolution via natural selection is, but one of the forces of evolutionary change. Other important forces, all of which are nonadaptive, comprise mutation, recombination, and random genetic drift (Lynch 2007). As TE-Thrust emphasizes a key intragenomic role for TEs in mutation and recombination, it fits comfortably with a growing body of evidence indicating that a significant portion of evolutionary changes are not adaptive in nature, but result from the accumulation of mildly deleterious mutations that can become fixed by genetic drift in populations of relatively small size (Fernández and Lynch 2011). Indeed, although the occasional highly deleterious TE insertion will be rapidly culled by purifying selection, TE insertions can themselves be viewed overall as an accumulation of neutral to mildly deleterious mutations that are subject to genetic drift. Activation of TEs, for example, during stress, or horizontal transfer of TEs etc., provides powerful complements to genetic drift. Thus, TEs accumulate by nonadaptive processes and can underpin nonadaptive change, and they also readily provide the raw material for future beneficial traits capable of undergoing positive selection.

We recognize that there are many known genomic facilitators of evolution, besides TE-Thrust. A few apposite examples are: symbiosis (Ryan 2007, 2009); hybridization (Ryan 2006; Larsen et al. 2010); noncoding RNA (Heimberg et al. 2008; Mattick 2011); horizontal gene transfer (Richards et al. 2006); whole genome duplications (Hoffmann et al. 2012), and viral driven evolution (Villarreal 2005, 2009; Ryan 2007; Villarreal and Witzany 2010; Feschotte and Gilbert 2012). Some facilitators of evolution may have greater importance in some clades than in others. For example, whole genome duplication (polyploidy) is apparently quite important in the evolution of angiosperms (Soltis et al. 2004). Ryan (2006) includes several of the examples above under the general descriptor “genomic creativity”.

Horizontal Transfer of TEs in TE-Thrust

Mobile DNA has been classified into Class I retro-TEs (e.g., LTR elements, LINEs, and SINEs), and Class II DNA-TEs, composed of subclasses 1 (e.g., Tc1-Mariner and hAT) and 2 (Helitron and Maverick), as have been described and reviewed elsewhere (Wicker et al. 2007; Böhne et al. 2008; Goodier and Kazazian 2008; Kapitonov and Jurka 2008; Hua-Van et al. 2011). The horizontal transfer of TEs (horizontal transposon transfer or HTT) has previously been proposed as a major force driving genomic variation and biological innovation (Schaack et al. 2010). DNA-TEs have long been known to be capable of HTT, for example, the P-element DNA-TE in Drosophila (Anxolabéhère et al. 1988; Daniels et al. 1990); the Mariner DNA-TE in various insects (Maruyama and Hartl 1991; Robertson and Lampe 1995; Lampe et al. 2003), and DNA-TEs in the bat Myotis lucifugus (Pritham and Feschotte 2007; Ray et al. 2007). However, HTT of retro-TEs, has been less well documented, except for some examples, including the patchily distributed Bov-B LINE, (Kordiš and Gubenšek 1998; Gogolevsky et al. 2008) and the Gypsy-like retro-TEs (Herédia et al. 2004).

Although probably infrequent, HTT is an important aspect of the TE-Thrust hypothesis that has so far only been given cursory attention (Oliver and Greene 2009a, 2011). Over 200 cases of HTT have been documented (Schaack et al. 2010), 12 of which were between different phyla. About a half of these known HTTs involved retro-TEs, most of which were LTR retro-TEs. The remaining HTTs involved a variety of DNA-TEs. Horizontal transfer is an important part of the life cycle of TEs, as they generally accumulate mutations and eventually become nonviable in the genomes they occupy. This can downgrade the efficacy of TE-Thrust. However, they are sometimes enabled, via chance events, to periodically make fresh starts with fully functional elements, in the genomes of other lineages. At least some TEs appear to be able to endure in the absence of HTT. For example, the LINE 1 (L1) retro-TE in mammals has persisted for 100 Myr with no known evidence of HTT (Furano et al. 2004; Khan et al. 2006), although it has now become nonviable in a few mammalian lineages (Casavant et al. 2000; Boissinot et al. 2004; Cantrell et al. 2008; Platt and Ray 2012).

Viruses and bacteria appear to be likely vectors of HTT (Piskurek and Okada 2007; Schaack et al. 2010; Dupuy et al. 2011), but endoparasites and intracellular parasites are among other possible vectors that have been proposed (Silva et al. 2004; Schaack et al. 2010). Empirical data (Anxolabéhère et al. 1988; Cantrell et al. 2005; de Boer et al. 2007; Pritham and Feschotte 2007; Ray et al. 2008) and simulations (Le Rouzic and Capy 2005) both suggest that TE amplification occurs immediately after HTT of a viable TE copy.

Holobionts and Holobiontic Genomes, and The Importance of the Highly Mobile Retroviruses

Exogenous retroviruses can become endogenized, and can be united with the host genome into a holobiontic genome in a new holobiont (Box 1). Holobiont is a symbiological term that means the partnership, or union, of symbionts (Rosenberg et al. 2007; Ryan 2007; Gilbert et al. 2010). For example, the ERVWE1 locus in the human genome comprises a conserved envelope (env) gene together with the conserved 5′ LTR of a retrovirus that contains regulatory elements. This locus, additionally, includes sections of human genetic sequences and these also play a role in regulation of the env gene, which codes for Syncytin-1 (Mi et al. 2000). Syncytin-1 has a crucial function in trophoblast cell fusion in ape placental morphogenesis (Mi et al. 2000), which strongly suggests that selection has occurred at the level of the holobiontic genome in the human plus retrovirus holobiont (Ryan 2006).

Box 1. Glossary of Terms

Parasite and Symbiont: To most contemporary biologists, a parasite is an often harmful organism in a partnership that benefits itself at the expense of the other partner, and a symbiont is an organism in a mutually beneficial partnership with another organism. However, Symbiologists define Symbiosis as: The living together of differently named (i.e., different species) organisms, including parasitism, commensalism, and mutualism (Ryan 2006, 2009) and this definition is used here.

TE-Thrust: A hypothesized pushing force generated by TEs within genomes, that can facilitate adaptation, and punctuated or major evolution, within the corresponding lineages (Oliver and Greene 2011).

Virus: Viruses are a part of biology because they possess genes, have group identity, replicate, evolve, and are adapted to particular hosts, biotic habitats, and ecological niches. Most viruses are persistent and unapparent, that is, not pathogenic (Villarreal 2005).

Viral Biogenesis: Exogenous retroviruses, and some other exogenous RNA viruses, can act in mutualism when endogenized in other genomes, and their genomes are united with the host genome into a “holobiontic genome”.

Holobiont: The partnership, or union, of symbionts (Ryan 2007; Gilbert et al. 2010).

Mobilome: A general term for the total content of the mobile DNA in any genome. Mobilome Consortium (Villarreal) implies that the presence or activity of each individual or category of TE, within the Mobilome, likely affects the mobilome as a whole, e.g., SINE viability is coupled to LINE compatibility and viability.

Adaptive potential: The potential of a lineage to adapt over decades or centuries. Such adaptation can be associated with one to several genes.

Evolutionary potential: The potential of a lineage to evolve and radiate, possibly by punctuation events, over thousands or millions of years. Such evolution may be associated with major organizational and architectural genomic changes. Note: Adaptive potential and Evolutionary potential are not distinct entities, but are useful descriptors for the extremities of an Intra-genomic potential continuum.

Retroviruses appear to be the most mobile of all “mobile DNA” as they can exist exogenously as infectious, or persisting viruses, as well as by becoming endogenized in host germ lines (Hughes and Coffin 2001, 2004; Ryan 2006). Exogenous retroviruses are distinct entities to those species whose genomes into which they endogenize to become an ERV, and they have an extracellular or virion stage, with a protein capsid. ERVs then are a part of a holobiont organism. Other TEs in a genome are not considered to be a part of a holobiont, as they seemingly can only transfer from genome to genome, and can have no independent existence like that of an exogenous retrovirus species.

Endogenized retroviruses (ERVs) can multiply within a genome either by repeated endogenizations, or by retrotransposition within the genome (Belshaw et al. 2004; Wang et al. 2010). Over time, due to recombinations between their LTRs, and deletions, ERVs often exist mostly as solo LTRs or sLTRs, (Sverdlov 1998). Many Class I elements are related to retroviruses, namely the Copia, Gypsy, and BEL/Pao subclasses of LTR retro-TEs, which have LTRs (long- terminal repeats), but lack an env gene.

Retroviruses are present among all placental mammals (Bénit et al. 1999), are largely restricted to vertebrates, and are particularly abundant in mammals (Villarreal 2005). Retroviruses have been endogenized in mammalian germ lines many times during the evolution of mammals. These ERVs have been a very important factor in their evolution (Villarreal 2005), and are particularly associated with that mammalian innovation, the placenta (Oliver and Greene 2011). Endogenized retroviruses, and the role they play in evolution, have been extensively detailed elsewhere (Villarreal 1997, 2004, 2005, 2009; Ryan 2003, 2006, 2007; Feschotte and Gilbert 2012).

Endogenous nonretroviral RNA virus elements, notably Bornaviruses, have also been found in mammalian genomes, including several primates and several rodents, and these viral sequences appear to have function (Belyi et al. 2010; Horie et al. 2010). Indeed, all major types of eukaryotic viruses can give rise to endogenous viral elements or EVEs (Feschotte and Gilbert 2012). Thus, viral-eukaryote holobiont organisms appear to be not uncommon, and these could have lead to significant evolutionary innovation. This enhances the explanatory power of the TE-Thrust hypothesis.

Retroviruses and the Evolution of the Mammalian Placenta

The placenta represents a major evolutionary innovation that occurred over 160 Mya at the time of the divergence of the placental mammals. The circulatory and the metabolic benefits provided by this transient organ to the growing embryo and fetus have been well investigated, but less so well understood is the origin of the placenta. The invasive syncytial plate, the precursor to the placenta, and the rapidly growing trophoblast, are developmentally unique to mammals (Harris 1991). Harris proposes that prior to the divergence of placental mammals, developing embryos became infected at an early intrauterine stage with retroviruses, which gave rise to cellular proliferation and creation of the trophoblast. This may then have resulted in the formation of the highly invasive “tumor-like” vacuolated and microvillated syncytial plate and a primitive placenta (Harris 1991). Although to date, there is no proof that the fusogenic ERVs of premammals resulted in the evolution of the mammalian placenta (Harris 1991; Dupressoir et al. 2009) it seems likely to be correct. Supporting evidence comes from the egg-laying platypus, which has a genome that is devoid of ERVs, although there are some thousands of ancient Gypsy-class LTR retro-TEs (Warren et al. 2008). In contrast, all examined placental mammal genomes do contain many ERVs (Mayer and Meese 2005; Villarreal 2005), with ERV/sLTRs constituting approximately 8% and 10% of the human and mouse genomes, respectively (Waterston et al. 2002). Atypically, the placenta exhibits global DNA hypomethylation, which allows many ERVs and retro-TEs to retain transcriptional activity in this tissue (Rawn and Cross 2008). Such a permissive environment for expression of TEs facilitates their exaptation as coding or regulatory sequences, and indeed, the LTRs of ERVs contain promoter activity that can confer tissue-specific expression in the placenta, as for example, the CYP19A1, IL2RB, NOS3, and PTN genes, which are solely expressed by an LTR promoter (Cohen et al. 2009). Although there are few known unique placenta-specific genes, numerous genes expressed in the human placenta are derived from retro-TEs and ERVs (Rawn and Cross 2008). Most notable are the fusogenic, ERV env-derived, syncytin-1, and syncytin-2 (Mi et al. 2000; Blaise et al. 2003), with syncytin-2 also having an immunosuppressive function (Kämmerer et al. 2011). The efficient adaptive immune systems of mammals must fail to initiate an immune reaction to the antigens of their embryos and placentas, and mammals alone are very highly infected with the generally immunosuppressive endogenous retroviruses (Villarreal 1997). Intriguingly, retroviruses are abundant around sperm heads and also coat the female placenta (Steele 2009). The advantages of the placenta could possibly explain why extant placental mammals number well over 5,000 species, whereas there are less than 300 extant species of marsupials (Pough et al. 2009).

Evolvability and the TE-Thrust Hypothesis

Mutation, including gene duplication and other DNA changes, is the driving force of evolution at both the genic and the phenotypic levels (Nei 2005, 2007). Significantly, Shapiro (2010) proposes that it is mobile DNA movement, rather than replication error that is the primary engine of protein evolution. Along the same lines, Hua-Van et al. (2011) stress TEs as a major factor in evolution, whereas Muotri et al. (2007) proposes that “handy junk” can evolve into “necessary junk”. Wagner (Heard et al. 2010), in support of our original concepts (Oliver and Greene 2009a) states that, in general, “the kinds of genetic changes that are possible depend on what kinds of TEs are present and active at any particular time”, in the evolution of each lineage. Thus, the potential for evolutionary innovations differs over time, contradicting the concept of gradualism in lineages. Caporale (2009) posits that “selection must act on the mechanisms that generate variation, much as it does on beaks and bones”. Earl and Deem (2004), with no mention of TEs, propose the evolution of mechanisms to facilitate evolution, and describe evolvability as a selectable trait. Further to this, Woods et al. (2011) found experimental evidence, in a study of bacteria that long-term evolvability may be important for determining the ultimate success of a lineage, and that less fit lineages with greater evolvability may eventually out-compete lineages with greater fitness. All these lines of reasoning, and associated experimental data, are in good accord with the TE-Thrust hypothesis.

Reduced “Fitness” versus enhanced “Adaptive Potential” and “Lineage Selection”

Accumulation of TEs in the genome of Drosophila melanogaster has been found to be associated with a decrease in fitness (Pasyukova et al. 2004). The reduced “fitness” in Drosophila may be an extreme case, because in D. melanogaster TEs cause over 50% of de novo mutations (Pasyukova et al. 2004). In contrast to D. melanogaster, de novo disease-causing insertions in humans are relatively rare (Deininger and Batzer 1999; Kazazian 1999; Chen et al. 2005; Hedges and Batzer 2005), whereas TE activity in the laboratory mouse falls between these two extremes (Kazazian 1998; Waterston et al. 2002; Maksakova et al. 2006). There is, however, no conflict with the TE-Thrust hypothesis with this finding in Drosophila, as despite a fitness loss in some individuals in the present, there can be a fortuitous gain in adaptive potential to the lineage as a whole. TEd-alleles (TE- deactivated or destroyed alleles), for example, usually lower the fitness of the lineage. However, TEm-alleles (TE-modified alleles, which can be modified in either regulation or function, or duplicated), for example, increase the genetic diversity, and hence the adaptive potential, of the lineage. These TEm-alleles allow the lineage to adapt to environmental/ecological challenges in the present. Also, importantly, this adaptive potential may be latent in the present, and only be realized in the future, as environmental/ecological challenges change. This latent adaptive potential then, increases the chances of the long-term survival of the lineage. In other words, TE-Thrust can result in latent adaptive potential (also called standing variation), which can be realized, if needed, in the future, and can result in the differential survival of lineages. This is the rationale for positing lineage selection in the TE-Thrust hypothesis (Oliver and Greene 2009a,b, 2011).

Realizable “Adaptive Potential” Due to TE-Thrust

TE-Thrust is proposed to have facilitated adaptive change, as we highlighted in the simian lineage (Oliver and Greene 2011). The ongoing ability of TEs to provide realizable adaptive potential is illustrated by TE-generated polymorphic traits identified in isolated populations of laboratory-bred mice (Table 1), as well as by structural variation in the human genome still being created by L1 activity (Ewing and Kazazian 2010).

[...]A specific example of an adaptive benefit from TE activity is the development of insecticide resistance in the Hikone-R strain of Drosophila melanogaster. [...] These four steps have occurred within 70 years in the Hikone-R strain of Drosophila melanogaster, and the more derived the allele, the greater the resistance (Schmidt et al. 2010). Such allelic successions, whereby different adaptive alleles are substituted sequentially have been demonstrated in several other studies of insecticide resistance (Schmidt et al. 2010).[...]

The Failure of Mutation Breeding

In a review, Lönnig (2005), described how, despite early enthusiasm and sustained effort, mutation breeding (in either plants or animals) has never been successful. The mutations caused by mutagens usually produced weaker or nonfunctional alleles of wild type genes. In TE-Thrust, however, the TEs usually consist of functional coding or exaptable sequences, and often also of potent regulatory sequences, so that by insertion and in many other ways, for example, exon shuffling in the active mode and ectopic recombination in the passive mode, they can make many beneficial changes, although they may sometimes do damage (Oliver and Greene 2009a,b, 2011). TEs can alter the regulation or the structure of alleles, or duplicate them (Darboux et al. 2007; González et al. 2009, 2010; Schmidt et al. 2010) creating TEm-alleles. Therefore, although attempted breeding, adaptation or evolution, using mutagens to generate alternative alleles almost always does not work (Lönnig 2005), adaptation or evolution using TE-Thrust generating TEm-alleles relatively often does work. This is not to say that other types of mutation, such as point changes, are not important in evolution. In fact, in addition to their general importance in evolution, such mutations often complement TE-Thrust, for example, by modifying TE-duplicated sequences.

Reduced “Fitness” versus Enhanced “Evolutionary Potential”

The question of whether or not the possible lowering of fitness in a lineage by TEs can result in enhanced evolutionary potential may be simplified into two competing hypotheses:

The Null Hypothesis: TE-Thrust is not causal to adaptation, speciation, punctuation events, or evolution.

The Alternative Hypothesis: TE-Thrust is causal to adaptation, speciation, punctuation events, and evolution.

Testing the Hypotheses

Recent/ancient speciation and the alternative (TE-Thrust) hypothesis

In the absence of events, such as intermittent de novo modifications to successive families of TEs, de novo SINE synthesis, HTT, or de novo synthesis of chimaeric TE elements, TE bursts in lineages eventually tend to fade to inactivity, with TEs becoming nonviable and degraded by the accumulation of deleterious mutations. An example is the apparent loss of L1 element activity in a number of species. These include the spider monkey, thirteen-lined ground squirrel, megabats, and sigmodontinae rodents (Casavant et al. 2000; Boissinot et al. 2004; Cantrell et al. 2008; Platt and Ray 2012), although at least in the case of the sigmodontinae, which have undergone rapid fecund speciation with numerous karyotypic changes, the loss of viable LINEs appears to have been more than compensated for by massive endogenisations of ERVs (Cantrell et al. 2005; Erickson et al. 2011). As TE-Thrust predicts that lineages lose their adaptability as overall TE activity and integrity fades, the loss of TE viability over time provides an intragenomic explanation to help account for the high rate of background extinction that has been a prevalent feature of life on earth (Raup 1994). In contrast, lineages harboring young TE families are associated with recent speciation. This is well exemplified in the mammals where species with the highest numbers of young TE families, such as the mouse, rat, bat, rhesus macaque, and human, represent the largest extant mammalian orders of rodents, bats, and primates (Jurka et al. 2011). Very species-poor extant mammalian lineages, such as the alpaca, elephant, tenrec, armadillo, and platypus, do not harbor any young families of TEs (Jurka et al. 2011). Nevertheless, TE-Thrust predicts more ancient speciation events being attributed to older families of TEs, when they were young, and this is supported by phylogenetic analyses (Jurka et al. 2011). These data are consistent with the Alternative (TE-Thrust) Hypothesis.

The vesper bats and the alternative (TE-Thrust) hypothesis

The radiation of the vesper bats (family Verspertilionidae) appears to support the Alternative Hypothesis and the active mode of TE-Thrust. The vesper bats, which have an almost worldwide distribution (Nowak 1994), are a fecund lineage (407 species of the approximately 930 species of microbats or 8–9% of all extant mammal species), and include Myotis, the most speciose mammalian genus with about 103 members. Significantly, vesper bats are somewhat unique in having many viable and active DNA-TEs that have been nonviable in most other mammals for 37 Myr (Pace and Feschotte 2007).

The early radiation of the vesper bats is proposed to have been due to HTT of Helitron DNA-TEs, called Helibat, into the vesper bat lineage about 30–36 Mya (Pritham and Feschotte 2007).
Amplification of DNA-TEs is thought to follow HTT in a naive lineage, which can result in innovations in the genome (Pace et al. 2008).
Helibat has amplified explosively up to at least 3.4% of the Myotis lucifugus genome (Ray et al. 2008).
HTT of Helitrons, especially, can lead to diversification, and to dramatic shifts in the trajectory of genome evolution (Thomas et al. 2010).
HTT of of DNA-TEs can also lead to horizontal gene transfer (Thomas et al. 2010).
Although Helitrons have not been detected in other mammals besides the vesper bats, they are abundant in plants, invertebrates, and zebrafish, and have been implicated in large-scale gene duplication and exon shuffling.
There were other multiple waves of HTT of DNA-TEs in the bat lineage coinciding with a period of their rapid diversification 16–25 Mya (Teeling et al. 2005; Pritham and Feschotte 2007; Ray et al. 2008).
A further burst of New World Myotis diversification 12–13 Mya was noted (Stadelmann et al. 2007), corresponding well with the period that the most active transposition of a variety of DNA-TEs is estimated to have occurred (Ray et al. 2008).
Such repeated waves of TE activity suggest a mechanism for generating the genetic diversity needed to result in the evolution of such great species richness as is observed in the vesper bats (Ray et al. 2008).
Active retro-TEs, namely L1 LINEs (Cantrell et al. 2008) and VES SINEs (Borodulina and Kramerov 1999), have also been found in vesper bats.

This mix of viable DNA-TEs and retro-TEs, unknown in other mammals, could have resulted in large architectural and organizational changes in their genomes and aided in the Myotis diversification, enabling adaptation to very diverse ecological niches within this lineage (Pritham and Feschotte 2007; Thomas et al. 2011). This suggests that much active TE-Thrust has operated during the very large radiation of the vesper bats during the last 36 Myr. A lack of data presently obscures any conclusions regarding any possible involvement of passive TE-Thrust. The predicted evolutionary outcome of such intermittently active populations of TEs is either gradualism or stasis with punctuation events, (Type I or II punctuated equilibrium). Current data suggest that this is correct for the Verspertilionidae.
The Muridae Rodents and the Alternative (TE-Thrust) Hypothesis

The extensive radiation of the Old World Muridae (the Murinae) appears to support the Alternative Hypothesis, and both the active and the passive modes of TE-Thrust. The rodents are the most fecund mammalian order comprising about 40% of mammals with an almost worldwide distribution. The Muridae family, which include the true mice and rats, have been particularly successful and account for about two-thirds of all rodent species. Representatives of the subfamily Murinae (Mus and Rattus) possess large populations of relatively homogenous retro-TEs, many of which are viable and active (Table 2).
Table 2
Table 2
Presence and Viability of Transposable Elements (TEs) in Distinct Mammalian Species

The Old World mouse (Mus) and rat (Rattus), with some 50–60 species each in their respective genera, have genomes comprised of about 40% largely homogenous genomic TEs. These include numerous viable and mostly highly active L1 LINEs and few nonviable ancient L2 LINEs, giving a LINE total of 22%. SINEs comprise a further 7% and most (92%) are lineage specific, viable, and effective, although slightly diverse, with only few being the nonviable ancient MIR SINEs. Less than 1% of their genomes are composed of nonviable DNA-TEs (Waterston et al. 2002; Gibbs et al. 2004). The mouse has about 10% ERV/sLTRs, many of which are very active and are closely related to mouse exogenous retroviruses (Maksakova et al. 2006).
The fitness cost of their greatly enhanced evolutionary potential is higher than in humans, as previously noted (Maksakova et al. 2006).

Although the generally small size of many rodents probably aided in their diversification, there has seemingly been much active TE-Thrust, as indicated by the growing number of documented examples of rodent-specific traits generated by TEs (Table 3). They are also quite well suited to passive TE-Thrust, as they have large homogenous populations of TEs to facilitate TE-mediated duplications, inversions, deletions or karyotypic changes. The predicted evolutionary outcome of large homogenous and intermittently active populations of TEs is gradualism with punctuation events (Type II punctuated equilibrium), as in the hypothesized mode 2 of TE-Thrust.
Table 3
Table 3
Specific Examples of Transposable Elements (TEs) Implicated in Rodent-Specific Traits
The naked mole rat and the alternative (TE-Thrust) hypothesis

In sharp contrast to Mus and Rattus, which are both very rich in species and have abundant viable and active TEs (Waterston et al. 2002; Gibbs et al. 2004), the rodent genus Heterocephalus, also in the family Muridae, has only one species (Wilson and Reader 2005). In support of the Alternative Hypothesis, sequencing of H. glaber (Kim et al. 2011), the very atypical, physiologically unique, eusocial, and long-lived naked mole rat, has shown that it possesses a nonviable and relatively small mobilome consortium (Table 2).

The TEs of the naked mole rat, although they are homogenous and constitute 25% of the genome, are highly divergent, indicating they have been both nonviable and inactive for a very long time (Kim et al. 2011).
As most mammals have 35–50% TEs, this suggests that a substantial portion of its TEs may have been lost altogether.

The data indicate that H. glaber has had little or no TE-Thrust, except in the remote past, and if all else is equal, it is in stasis or gradualism. (Note: As viable and active TEs are known to occasionally cause harmful mutations, these data additionally suggest that there possibly could be less genetic disease and cancer in the individuals of species, such as H. glaber).[...]

Summary of the evidence for the alternative (TE-Thrust) hypothesis

It can, of course, be argued that this evidence in mammals (microbats, rodents, and the platypus), reptiles (the green anole lizard and the tuatara), and the evolution of the mammalian placenta, is all only circumstantial evidence, and therefore does not demonstrate a causal link between TE-Thrust and enhanced evolutionary potential. This argument is weakened by the abundance of young families of TEs in the largest extant mammalian orders of rodents, bats, and primates, and their absence in the elephant, alpaca, tenrec, armadilo, and platypus. The argument of “only circumstantial evidence” is further weakened by the wide range of known conserved and/or beneficial genomic modifications that are due to TEs in various lineages (Brosius 1999; Miller et al. 1999; Kidwell and Lisch 2001; Nekrutenko and Li 2001; van de Lagemaat et al. 2003; Jordan et al. 2003; Kazazian 2004; Shapiro and Sternberg 2005; Volff 2006; Böhne et al. 2008; Oliver and Greene 2009a, 2011). Therefore, it seems that a causal link between recent TE activity, sometimes resulting in reproductive isolation, and recent speciation events is indeed likely.

Some hard evidence can be provided with regard to adaptive potential and adaptive evolution in insecticide resistance by insects in the last 70 years, and adaptation to temperate climates in the last few centuries. However, a punctuation event is estimated to take between 15,000 and 40,000 years (Gould 2002). It appears then that, as yet, bursts of TE activity and punctuation events cannot be dated accurately enough to establish any definite relationship. However, some apparent correlations have been reported, suggesting that increased TE activity may indeed be basal to, or coincident with, punctuation events and evolutionary transitions, speciation, or large radiations. Some examples of these, in addition to those detailed above, are:

Ohshima et al. (2003) found bursts of Alu SINE and retrocopies coincident with the radiation of the higher primates 40–50 Mya.
DNA-TE activity coincided with speciation events in salmonoid fishes (de Boer et al. 2007).
Bursts of transposition of BS element transposition have also shaped the genomes of at least two species of Drosophila, D. mojavensis and D. recta (Granzotto et al. 2011).
There are numerous examples of bursts of TE activity that often follow polyploidization events (Comai 2000), or hybidization (Michalak 2010), in angiosperms, leading to speciation.

Some suggest that a role for TEs in speciation is speculative (Hua-Van et al. 2011), whereas others have given data, which they readily acknowledge specifically suggests TE involvement in taxon radiations (de Boer et al. 2007; Pritham and Feschotte 2007; Ray et al. 2008; Thomas et al. 2011). In our interpretation of the available data, we suggest that, if all else is equal, minimal or passive TE-Thrust is likely to result in stasis or gradualism, whereas active TE-Thrust is likely to be causal to innovative evolution (e.g., the placenta), punctuation events and radiations, as in our hypothesized four modes of TE-Thrust (Oliver and Greene 2011). However, we readily acknowledge that some punctuation events may be caused by other facilitators of evolution.

Conclusions

The field of evolutionary biology has seemingly paid more attention to the outcomes of genetic mutation in terms of the generation of variants and their selection within populations than the mechanisms by which mutations emerge in the first place. Although small-scale DNA base changes and deletions are important in evolution, TEs (and viruses) are uniquely placed, via TE-Thrust, to expeditiously cause complex and/or large-scale changes and thereby help explain macroevolutionary change and the emergence of highly innovative adaptations. Much still remains to be investigated, such as the relevance of TE-Thrust to other classes and phyla. Only a small number of lineages in the metazoans: the mammals and to a lesser extent, a very few lineages of the insects, plants, and reptiles, have been considered with regard to the TE-Thrust hypothesis to date. As increasing numbers of genomes are being sequenced, it would be interesting to investigate the link between TEs, exogenous viruses, and enhanced adaptive potential, enhanced evolutionary potential, evolutionary transitions, and the occurrence of punctuation events, in the lineages of other taxa. It seems likely that in the great diversity of extant lineages, TE-Thrust and other facilitators of evolution will have had a greater or lesser impact on adaptation and evolution. There seems to be little doubt, however, that TEs and viruses have played a major and prominent role in the evolution of almost all life on earth, and that TEs and viruses need to be recognized and included, as the TE-Thrust hypothesis, in a much needed extension and modification in evolutionary theory.
 
This is a publication of the journal Nature. It is very mainstream, yet one gets the idea that something is going on in the Virology world that has them working around the clock so to speak. It is the second publication I had stumbled upon among these lines that has open access.

I think they are genuinely worried. But they should be reading the signs of the times and looking up to the sky for more clues :D

Emerging Microbes & Infections (2013) 2, e31; doi:10.1038/emi.2013.25 (Published online 22 May 2013)

Virus ecology: a gap between detection and prediction

_http://www.nature.com/emi/journal/v2/n5/full/emi201325a.html?WT.ec_id=EMI-201305

Christian Drosten

Institute of Virology, University of Bonn Medical Centre, Bonn 53105, Germany

The past few months have yielded disconcerting news about viruses carried in mammalian reservoirs. What is the relevance of virus discoveries mushrooming in the literature? Will bats yield the next pandemic virus? Animal ecologists and virologists need to join forces.

Virologists have been surprised by a recent report that has changed our long-standing conception of the ecology of influenza viruses. Potentially, we can no longer rely on waterfowl to be the only source of new flu variants, as bats have now been found to harbor influenza viruses whose internal genes share common ancestry with all known influenza A viruses.1 Other genome portions share even older ancestry,2 while the main surface protein lies within the known diversity of ‘usual’ influenza A viruses. The appearance of such a vast mixture of genes suggests that more undiscovered flu strains are lurking in bats.

For any virus, the identification of a mammalian reservoir is highly relevant because the ‘fitness valley’ that viruses need to cross for the conquest of new hosts is shallow if the hosts are genetically related.3 Our knowledge of mammalian viruses is fairly opportunistic, focusing on agents of obvious disease in livestock and pets. The range of viruses carried unnoticed by our phylogenetic next of kin may be huge. For instance, wild small mammals including bats and rodents have now been shown to harbor a tremendous spectrum of relatives of human paramyxoviruses—a family that contains the mumps virus, several different respiratory agents and the measles virus.4 Not all of these have yet been proven to have their cognates in bats, but the sample studied so far is just a tiny fraction of the tremendous bat diversity. Some of these agents have already been suggested to cross-infect humans.5 That is a worrying perspective because the concept of liberating humankind from some of its most notorious viruses by mass vaccination is essentially dependent on the absence of animal sources from which eradicated viruses could be replenished.6 The implications of recent findings might even reach into the future agenda of virus eradication: the hepatitis C virus, one of the most important human viruses and a prime candidate for eradication pending vaccine availability, has relatives in companion animals including dogs and horses.7,8

These and other recent findings remind us of an important issue in viral reservoir ecology: non-persisting viruses are maintained on a social level, requiring large, dense and interconnected host groups for their perpetual transmission.9 Human immunodeficiency virus and its ape reservoir with a rather small group size might have been a decoy rather than a paradigm for this field of research because the virus is able to persist in individuals and depends less on efficient transmission for maintenance. On the contrary, candidates for the next pandemic would be agents that are transmitted efficiently and cause acute disease—such as severe acute respiratory syndrome and flu. The novel human coronavirus EMC/2012 with its connection to bats might establish another recent case.10,11

Within the class of mammals, bats form the largest contiguous social groups. Their association with pathogenic viruses has been proposed to be due to specific immune functions,12 but these remain to be proven. Large social group sizes and a migratory lifestyle may suffice to make certain bat species become breeders of viruses. The reliance of bat-borne viruses on transmissibility rather than persistence could explain their high onward transmissibility after host-switching.13 There are prominent examples of bat-borne viruses that can be passed between humans, including Ebola virus, Marburg virus, Nipah virus and the severe acute respiratory syndrome agent. For comparison, we have few examples of rodent-derived viruses that are routinely passed from human to human. Lassa virus may be the only relevant exception, and even there, transmission seems to be possible only under conditions of very close contact.

Apart from certain bat species, there is only one other mammalian species that forms interconnected social groups of more than one million individuals—humans. We may thus provide a familiar environment for bat-borne viruses that are optimized for transmission in large social groups. In the virus-hunting scene, there is now a rush to study bat-borne viruses, doubtlessly triggered by the finding of severe acute respiratory syndrome-related viruses and the conjecture that bat-borne viruses might spark the next pandemic. However, there remains a large gap between the many studies describing novel reservoir-borne viruses and our capabilities to use this knowledge to predict or prevent future human disease outbreaks.

This is not to say there is no progress. There are reports emerging of longitudinal and quantitative studies of reservoir-borne viruses showing potential utility for prevention. For instance, very recent work has identified adolescent bats as pronounced carriers of Marburg virus in a crowded bat cave in Uganda where at least two well-documented human infections have occurred.14 Interestingly, these adolescents are forced to roost in less preferred places close to the cave’s entrance—areas preferentially touched and passed by humans visiting the cave. Other studies have convincingly shown that the breeding season is a time when several bat-borne viruses are amplified—a situation that is highly similar to a kindergarten where runny noses are commonplace.15

However, beyond such practical insight, we still know little about the fundamental ecological mechanisms driving virus emergence. The idea that reservoir-borne viruses should exist peacefully with their hosts is most likely not widely valid.13 As we dig deeper into viral reservoir ecology, including its man-made modifications, we may find that changes in host populations affect the transmission and maintenance of viruses with possible consequences for their potential to infect humans (Figure 1). For example, analogously to the dilution effect theory, one could expect that either the reduction or expansion of the host group density would allow more virulent virus variants. Obviously, the investigations necessary to probe such effects need to be led by ecologists rather than virus hunters.

As for virologists, we will contribute little to the prevention of the next pandemic by piling up virus sequences—we need to generate functional insight to further triage among reservoir-borne viruses with regard to their epidemic risks. For example, we can identify bona-fide interferon antagonists in reservoir-borne viruses using sequence homology and systematically test how potent these proteins are at breaking our innate immunity barrier.16 Beyond innate immunity and receptor-mediated cell entry, there are exciting new results from comparative studies of virus–host interactions across the family tree of viruses that identify new cellular pathways that can be hijacked by viruses or that suppress their replication.17 Not only can these additional targets be used as tests for viral cross-host compatibility, but their comparison between mammals may also yield targets for cross-host antiviral drugs. Such drugs could confer practical pandemic preparedness.
 
Psyche said:
It is very mainstream, yet one gets the idea that something is going on in the Virology world that has them working around the clock so to speak.
...I think they are genuinely worried.

Thank you for the links. There seems to be a lot of focus on viral disease, and since this is a significant income source for the health industry through medicines and vaccines, I can see the logic from the profit-above-all point of view.
 
Another update...

The war on emerging pathogens is intensifying in 2013.

_http://www.nature.com/emi/journal/v2/n6/full/emi201336a.html?WT.ec_id=EMI-201306

The outbreak of avian-origin influenza A (H7N9) virus in eastern China1,2 has reminded the world of the imminent threat of unexpected pathogens, including an “old” virus, influenza. Recent conversation has centered on H5N1, H9N2, H7N3, and H7N7, but never before had we considered H7N9 to be the cause of outbreaks of human infection or the next possible pandemic. Maybe we have to take a closer look at the possibility of reassortment among any of the 16 hemagglutinins and 9 neuraminidases subtypes, and even within the newly identified bat-derived, influenza-like virus H17N10.3,4

A new coronavirus, called human coronavirus Erasmus Medical Center (hCoV-EMC) (with a recent proposed new name as Middle East respiratory syndrome coronavirus, or MERS-CoV in abbreviation), has caused alarm in the Middle East, as human infection was first reported in March 2012.5 In one year, as of May 12, 2013, there have been 34 cases, with 18 fatalities in total (www.who.org). More importantly, human-to-human transmission has been reported, with second-generation infections in France and the UK in those individuals who have had close contact with patients with a history of travel to the Middle East.

Less publicized but equally significant, the recently emerged severe fever with thrombocytopenia syndrome virus (SFTSV) expanded its geographic spectrum in 2012–2013, from China to the USA, and now to Japan.

SFTSV-induced disease was first suspected in China in 2009, and the virus was isolated and confirmed in 2011.6 SFTSV is a new member of the genus Phlebovirus, with over 70 known members in the genus, which is in the family Bunyaviridae. Although the phlebovirus has been found in Africa and Europe for many years, SFTSV is the first-ever virus of this type isolated in China.6,7,8,9,10 The virus is known as the Heartland virus after the name of the place (Heartland, Missouri) where the virus was first isolated in the USA. The Heartland virus is phylogenetically distinct from SFTSV isolated in China, although similar clinical manifestations have been observed.9

Early this year, SFTSV was confirmed in western regions of Japan. Officials referred to the etiological agent of this outbreak as the same that caused disease in China, or SFTSV. However, these two agents are similar but not identical. As Dr. William L. Nicholson from the USA Centers for Disease Control and Prevention (CDC) suggested, these viruses could be considered as “cousins.”

The viruses from three countries are too different to be linked in their transmission. The viruses are most likely of the same type but with local origins. In fact, both USA Heartland virus- and Japanese SFTSV-infected patients were retrospectively confirmed, and travel by certain patients can be traced back to 2009 for the USA and the summer of 2012 for Japan. Scientists from both countries are now working on several earlier suspected cases. There is no evidence that the patients in the USA or Japan had travelled to China. Therefore, it seems the virus has been in the USA and Japan for some time. The three viruses may not have a common origin but certainly cause similar or even the same symptoms and clinical outcomes.

In China, SFTSV has caused an approximately 12% case fatality rate (CFR), which is an alarming number for this country.6,11 Retrospective cases in Japan have an even higher CFR, with four deaths out of eight confirmed cases (additional suspected cases still need to be confirmed). The infected areas in China are concentrated in central China, covering six provinces. The major clinical symptoms and signs in the patients from the three countries are the same: high fever, thrombocytopenia, leucopenia, and elevated levels of serum hepatic enzymes. Although this group of viruses is transmitted by ticks, there is evidence in China that person-to-person transmission was highly probable through direct blood contact when the index patients had high viremia.12,13,14 Therefore, SFTSV is indeed a dangerous pathogen, and precautionary measures should be implemented in epidemic areas. Although no virus has yet been isolated from ticks, reverse transcription polymerase chain reaction (RT-PCR) tests on tick samples revealed evidence of virus.

To prevent infection and a possible epidemic, a call for vaccine development has been made in China. Scientists from the China CDC are working on this task in collaboration with large pharmaceutical companies. As high-level viremia is observed in acutely infected patients, therapeutic human-origin monoclonal antibodies or even antisera will serve as lifesaving agents that should be developed in the near future. Studies on pathogenesis, tick transmission, and useful animal models should also be pursued. A comparative study of the viruses from China, the USA, and Japan will answer many questions about the origins and diversity of these viruses.

Indeed, our war on emerging pathogens may never end.

Yikes! Expect the need to refuse a dangerous new vaccine that will only benefit Big Pharma pathocrats... They are playing with fire!
 
Another sign of the time:

Guinea confirms deadly mystery epidemic as Ebola

http://www.sott.net/article/276082-Guinea-confirms-deadly-mystery-epidemic-as-Ebola

Local experts had not been able to identify the disease, the symptoms of which are diarrhea, vomiting and bleeding, since they were first identified some six weeks ago. However, lab samples were sent to scientists in the French city of Lyon, who confirmed that it was Ebola.

The Guinean health ministry said 49 cases of the disease had been identified so far with 34 deaths in four prefectures.

"We are overwhelmed in the field, we are fighting against this epidemic with all the means we have at our disposal with the help of our partners but it is difficult. But we will get there," said the Guinean Health Ministry's chief disease prevention officer, Sakobo Keita.

Medical aid group Doctors Without Borders (MSF) said it would send reinforcements to help its teams of 24 doctors, nurses and health experts already in Guinea. The organization has set up isolation units in the southern region of Nzerekore and it is searching for people who may have had contact with infected individuals.

MSF also said it was sending some 33 metric tons of medicines, as well as isolation, sanitation and protective equipment.

Fears of cross-border contagion

Neighboring Sierra Leone's chief medical officer, Dr. Brima Kargbo, said authorities in his country were investigating the case of a 14-year-old boy who had died there after returning from the funeral of one of the disease's victims in Guinea. Kargbo said a medical team had been sent to test those who came into contact with the boy before his death.

Ebola is one of the world's most virulent and is so deadly contagions and there are fears it could be used as a biological weapon. It is normally spread through direct contact with bodily fluids and unprotected handling of contaminated corpses.

Testing is necessary to distinguish it from Marburg Hemorrhagic Fever or Lassa Fever, which can have similar symptoms.

There is no treatment or vaccine for Ebola, which can kill anything between 25 and 90 percent of those who fall ill after being contaminated.
 
In the mean time, some people in Canada are already in quarantine...

Canada: suspected Ebola in returning traveler

http://www.sott.net/article/276249-Canada-suspected-Ebola-in-returning-traveler

Health officials in Guinea battled to contain west Africa's first outbreak of the deadly Ebola virus as neighbouring Liberia reported its first suspected victims and a traveller returning to Canada was hospitalised with suspicious symptoms.

At least 59 people are known to have died in Guinea's southern forests and there are six suspected cases in Liberia which, if confirmed, would mark the first spread of the highly contagious pathogen into another country.

And there are fears the virus may have crossed continents, with a man returning to Canada from Liberia seriously ill in hospital after experiencing symptoms consistent with the virus, health officials said.

"As of this morning six cases have been reported of which five have already died -- four female adults and one male child. One of the suspected cases, a female child, is under treatment," Liberian Health Minister Walter Gwenigale said in a statement.

"The team is already investigating the situation, tracing contacts, collecting blood samples and sensitising local health authorities on the disease," he added.

Gwenigale did not specify the victims' nationalities, but Doctors Without Borders (MSF) said they were Liberian residents who had attended funerals in the Ebola-hit area of Guinea, which has strong "family ties" with northern Liberia.

"People come to attend funerals on one side and unfortunately they unwittingly get infected and then return home," Brussels-based MSF emergency coordinator Marie-Christine Ferir told AFP.

The local health ministry in Canada's Saskatchewan province said a man had been placed in solitary confinement, with his family in quarantine, pending expected results on Tuesday of tests.

"All we know at this point is that we have a person who is critically ill who travelled from a country where these diseases occur," Denise Werker, joint director of health in Saskatchewan, in western Canada, said.

To date, no treatment or vaccine is available for the Ebola pathogen, which kills between 25 and 90 percent of those who fall sick, depending on the strain of the virus, according to the World Health Organization (WHO).

Officials from the Guinean health ministry and the WHO met Sunday in Conakry for urgent talks on the crisis.

"The total suspect cases recorded to date amount to 86 cases with 59 deaths," the health ministry said in a statement, indicating that most cases reported since the start of the outbreak in early February were in Guinea's south.

The first analyses of samples by the Pasteur Institute in the French city of Lyon showed that cases in southern Guinea were due to the Ebola virus.

Three cases of haemorrhagic fever, two fatal, have also been reported in Conakry, but tests for Ebola proved negative.

Transmission to humans can come from wild animals, or from direct contact from another human's blood, faeces or sweat, or by sexual contact and the unprotected handling of contaminated corpses.

'Molecular shark'

The tropical virus -- described in some health publications as a "molecular shark" -- can fell its victims within days, causing severe fever and muscle pain, weakness, vomiting and diarrhoea -- in some cases shutting down organs and causing unstoppable bleeding.

It was first discovered in the Democratic Republic of Congo (DRC) in 1976. The central African country has suffered eight outbreaks.

The most recent epidemic, also in the DRC, infected 62 people and left 34 dead between May and November 2012, according to the country's health ministry.

Although there have also been outbreaks among humans in Uganda, the Republic of Congo and Gabon, the disease had never before been detected in people in west Africa.

The aid organisation Plan International warned that the epidemic risked spreading to neighbouring countries because of the free movement of people across borders.

Sierra Leonean aid organisation the Health For All Coalition warned of a high risk of transmission in border areas.

"People, goods and animals -- such as sheep, goats and cows used in Sierra Leone -- come from Guinea and it is these districts that they are brought into. And in these areas, people hunt for birds, monkeys and baboons for food."

Adjoining Senegal, Sierra Leone and Ivory Coast have reactivated their epidemiological surveillance systems.

The head of Ivory Coast's National Public Hygiene Institute, Simplice Dagnan, said officials were worried the virus could "easily" arrive there, warning: "Animals don't recognise borders."
 
Hmm, this could get scary considering the similarities between plague and Ebola and theories that the Black Death was caused by an Ebola-like virus.

Black Death Found to be Ebola
Wednesday, August 1, 2001

History textbooks have got it wrong about the Plague, also known as the Black Death, which they say was caused by bubonic plague spread by rats and their fleas. A new study suggests that it was in fact caused by an Ebola-like virus transmitted directly from person to person.

If the findings are correct it could mean that a modern form of the Black Death can emerge without requiring the unsanitary conditions of the Middle Ages. Generations of students have been taught that the plague bacteria transmitted by flea bites caused the depopulation of medieval Europe. The Plague first appeared in the 14th century and killed at least 25 million people - more than a quarter of the entire population - over a 300-year period. But two infectious disease specialists who have analyzed the Black Death have concluded that it bears a closer resemblance to modern outbreaks of the Ebola virus.

?Intuitively, the Black Death has all the hallmarks of a viral disease rather than one caused by plague bacteria,? says Christopher Duncan of the University of Liverpool. ?The history books are wrong, there?s little doubt about that.?

The first recorded outbreak of the Black Death occurred at the Sicilian port of Messina in 1347 and was brought in by Italian galleys returning from the Crimea on the Black Sea.A year later the disease arrived in the West Country of England and it soon spread to towns and cities where it caused fear and panic among a superstitious population who thought the red blotches on the chest of affected individuals were ?God?s tokens.?

Duncan says people soon learned that the only effective way of dealing with the Black Death was to put affected families and even entire villages into quarantine for 40 days. ?A quarantine period was first instituted in the city states of northern Italy in the late 14th century and this was gradually adopted throughout Europe and maintained for the next 300 years until the plague disappeared,? write Duncan and Susan Scott in their book Biology of Plagues.

?A quarantine would not have been effective if the disease was spread by rat fleas,? says Duncan. ?Rats don?t respect quarantines. This disease was transmitted directly from person to person which suggests an infectious virus.? Bubonic plagues spread in a complex fashion because they rely on the interaction of fleas, rats and people. Yet the pattern of spread of the Black Death was relatively simple and predictable, indicating person-to-person transmission.

?Endemic bubonic plague is essentially a rural disease because it is an infection of rodents,? the authors say. ?The Black Death, in contrast, struck indiscriminately in the countryside and towns.?

The symptoms of the Black Death point to a hemorrhagic fever caused by an Ebola-like virus. The fever struck suddenly, causing aching and bleeding from internal organs, as well as red blotches caused by the effusion of blood under the skin, which are classic symptoms of Ebola-like illnesses.


Professor Duncan said there is further evidence to back his theory in the form of a mutation in a key gene - called CCR5 ? which gives some protection against HIV. Scientists have found that this mutation arose only in Europe at about the time of the Black Death and its high frequency suggests it probably offered some resistance against the virus. A mutation that protects against a virus like AIDS today must have evolved to work against another virus in the past.

Meanwhile, doctors are investigating the death of a cyclist from a suspected case of bubonic plague ? the real kind, caused by fleas. The unnamed 28-year-old man was cycling near the airport in Colorado Springs about two weeks ago. Soon afterwards, he fell ill and died within a few days.

Plague was not suspected until the body of a prairie dog was found and analyzed at the same spot and was found to have died of the Plague. Public health officials reported that a chipmunk was found that had been killed by the disease near Lake Tahoe in California. People living in both areas were warned to keep pets inside.

Read the original source: http://www.unknowncountry.com/news/black-death-found-be-ebola#ixzz2x004bFXO
 
Possible damage control?

_http://www.thestar.com/news/canada/2014/03/25/canada_rules_out_suspected_case_of_ebola_virus.html

Canadian officials investigating a man suspected of having contracted Ebola during a visit to West Africa say it has been determined he does not have the virus.
Cailin Rodgers, a spokeswoman for Canada’s health minister, said Tuesday lab testing confirmed the individual hospitalized with symptoms of a hemorrhagic fever does not have Ebola.
She says there are no confirmed cases of Ebola in Canada.
The man remains seriously ill and is being kept in isolation in a Saskatchewan hospital.
 
Anthony said:
Possible damage control?

_http://www.thestar.com/news/canada/2014/03/25/canada_rules_out_suspected_case_of_ebola_virus.html

Canadian officials investigating a man suspected of having contracted Ebola during a visit to West Africa say it has been determined he does not have the virus.
Cailin Rodgers, a spokeswoman for Canada’s health minister, said Tuesday lab testing confirmed the individual hospitalized with symptoms of a hemorrhagic fever does not have Ebola.
She says there are no confirmed cases of Ebola in Canada.
The man remains seriously ill and is being kept in isolation in a Saskatchewan hospital.

I think that is even more telling. The Black Death was caused by an Ebola-LIKE virus, not necessarily Ebola itself. I suspect that any newly inborn-cometary virus would be precisely that, completely new and not necessarily detected by standard lab analysis, unless they look harder. That is, if Ebola analysis comes back negative, then we are talking about some kind of virus that scientists don't have a hold of yet, but still produces an hemorrhagic fever just like the Black Death did.

This can be the beginning, not necessarily THE return of the black death, but I wouldn't be surprised if one of these days we meet a global outbreak of unprecedented proportions in modern history.

My 2 cents!
 
The fatality rates of these hemorrhagic fever causing viruses are astounding. We'll have to wait and see what's in store.
 
I can imagine this virus taking space more and more and all West Africa been touched. This can be terrible.

Some years ago Richard Preston wrote a book about a virus very similar of the Ebola.

http://www.amazon.com/The-Hot-Zone-Terrifying-Story/dp/0385479565/ref=sr_1_1?ie=UTF8&qid=1395838066&sr=8-1&keywords=the+hot+zone
 
The Hot Zone shows how terrifyingly easy the world can become infected on a global scale just by someone taking an international plane ride. A person merely walking through the hallways of an international airport where one person breathes someones air, passes the bugger along to another, along to another and along on and on. Within minutes. People in the hallway get infected then disburse to their different global destinations, just to give a gift that keeps giving. Like a geometric progression or a wave perhaps... It's not easy to wrap my head on how quickly the world can become a petri dish.
 
Back
Top Bottom