...Using the powerful electron microscope, we can magnify milk 10,000,000 times. Now we can see casein micelles, which are amazingly complex. Imagine a mound of spaghetti and meatballs formed into a big round ball. The strands of spaghetti are made of protein (casein), and the meatballs are made of the most digestible form of calcium phosphate, called colloidal calcium phosphate, which holds the spaghetti strands together in a clump with its tiny magnetic charge. This clumping prevents sugar from reacting with and destroying milk’s essential amino acids.
Each tiny globe of fat in the milk is enclosed inside a phospholipid membrane very similar to the membrane surrounding every cell in your body. The mammary gland cell that produced the fat droplet donated some of its membrane when the droplet exited the cell. This coating performs several tasks, starting in the milk duct where it prevents fat droplets from coalescing and clogging up mom’s mammary passageways.
The milk fat globule’s lipid bilayer is studded with a variety of specialized proteins, just like the living cells in your body. Some proteins protect the globule from bacterial infection while others are tagged with short chains of sugars that may function as a signal to the intestinal cell that the contents are to be accepted without immune inspection, streamlining digestion. Still others may act as intestinal cell growth factors, encouraging and directing intestinal cells growth and function. As long as the coating surrounds the milk fat globule, the fat is easily digested, the gallbladder doesn’t have to squeeze out any bile for the fat to be absorbed, the fatty acids inside the blob are isolated from the calcium in the casein micelles, and everything goes smoothly. But if calcium and fats come into contact with one another, as we’ll see in a moment, milk loses much of its capacity to deliver nutrients into your body.
Let’s go back to the light microscope to take a look at pasteurized, homogenized milk and identify what distinguishes it from raw. One striking difference will be the homogeneity of fat globule sizes and the absence of living bacteria. But the real damage is hiding behind all this homogeneity and is only revealed under the electron microscope. Now, we see that these fat blobs lack the sophisticated bilayer wrapping and are instead caked with minerals and tangled remnants of casein micelles. Why does it look like this? The heat of pasteurization forces the sugar to react with amino acids, denaturing the proteins and knocking the fragile colloidal calcium phosphate out of the spaghetti-and-meatballs matrix, while the denatured spaghetti strands tangle into a tight, hard knot.
Homogenization squeezes the milk through tiny holes under intense pressure, destroying the architecture of the fat globules. Once the two processing steps have destroyed the natural architecture of milk, valuable nutrients react with each other with health-damaging consequences. Processing can render milk highly irritating to the intestinal tract, and such a wide variety of chemical changes may occur that processed milk can lead to diarrhea or constipation. During processing, the nice, soft meatball of colloidal calcium phosphate fuses with the fatty acids to form a kind of milkfat soap. This reaction, called saponification, irritates many people’s GI tracts and makes the calcium and phosphate much less bioavailable and more difficult to absorb.189
How difficult? Food conglomerates have a lot of influence on the direction of research funding. And the dairy industry is big business. Little wonder that no studies have been funded to compare the nutritional value raw, whole cow’s milk to pasteurized head-to-head. But studies have been done on skim milk and human breast milk comparing fresh versus pasteurized, and the difference is dramatic: Processed milks contained anywhere from one half to one sixth the bioavailable minerals of the fresh products.190,191 When fresh, the milk fat globule carries signal molecules on the surface, which help your body recognize milk as a helpful substance as opposed to, say, an invasive bacteria. Processing demolishes those handy signals and so, instead of getting a free pass into the intestinal cell, the curiously distorted signals slow the process of digestion down so much that it can lead to constipation.192 Heat destroys amino acids, especially the fragile essential amino acids, and so pasteurized milk contains less protein than fresh.193 But the damaged amino acids don’t just disappear; they have been glycated, oxidized and transformed into stuff like N-carboxymethyl-lysine, malonaldehyde, and 4-hydroxynonanal—potentential allergens and proinflammatory irritants.194
And there’s more. Many of the active enzymes in fresh milk designed to help streamline the digestive process have also been destroyed. Other enzymes, such as xanthine oxidase, which ordinarily protect the milk (but cause damage inside our arteries) can play stowaway within the artificially formed fat blobs and be absorbed. Normally our digestive system would chop up this enzyme and digest it. But hidden inside fat, it can be ingested whole, and may retain some of its original activity. Once in the body, xanthine oxidase can generate free radicals and lead to atherosclerosis and asthma. One more thing that makes raw milk special is the surface molecules on milk fat globule membranes, called gangliosides. Gangliosides inhibit harmful bacteria in the intestine. Once digested, they’ve been shown to stimulate neural development.195 Homogenization strips these benefits away...
Shanahan MD, Catherine (2011-04-22). Deep Nutrition: Why Your Genes Need Traditional Food (Kindle Locations 2520-2561). Big Box Books. Kindle Edition.